Cargando…
Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index
The spatiotemporal analysis of drought is of great importance to Eswatini as the country has been facing recurring droughts with negative impacts on agriculture, the environment and the economy. In 2016, the country experienced the most severe drought in over 35 years, resulting in food shortages, d...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AOSIS
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852612/ https://www.ncbi.nlm.nih.gov/pubmed/31745406 http://dx.doi.org/10.4102/jamba.v11i1.712 |
_version_ | 1783469878635659264 |
---|---|
author | Mlenga, Daniel H. Jordaan, Andries J. |
author_facet | Mlenga, Daniel H. Jordaan, Andries J. |
author_sort | Mlenga, Daniel H. |
collection | PubMed |
description | The spatiotemporal analysis of drought is of great importance to Eswatini as the country has been facing recurring droughts with negative impacts on agriculture, the environment and the economy. In 2016, the country experienced the most severe drought in over 35 years, resulting in food shortages, drying up of rivers as well as livestock deaths. The frequent occurrence of extreme drought events makes the use of drought indices essential for drought monitoring, early warning and planning. The aim of this study was to assess the applicability of the Standard Precipitation Index (SPI) for near real-time and retrospective drought monitoring in Eswatini. The 3-, 6- and 12-month SPI were computed to analyse the severity and onset of meteorological drought between 1986 and 2017. The results indicated that the climate of Eswatini exhibits geospatial and temporal variability. Droughts intensified in terms of frequency, severity and geospatial coverage, with the worst drought years being 1985–1986, 2005–2006 and 2015–2016 agricultural seasons. Moderate droughts were the most prevalent, while the frequency of severe and very severe droughts was low. Most parts of the country were vulnerable to mild and moderate agricultural droughts. Spatial analysis showed that the most severe and extreme droughts were mostly experienced in the Lowveld and Middleveld agro-ecological zones. The 3-, 6- and 12-month SPI computations conducted in January detected the onset of early season drought, thereby affirming the applicability of the index for monitoring near real-time and retrospective droughts in Eswatini. Drought monitoring using the SPI provides information for early warning, particularly in drought-prone areas, by depicting a drought before the effects are felt. |
format | Online Article Text |
id | pubmed-6852612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | AOSIS |
record_format | MEDLINE/PubMed |
spelling | pubmed-68526122019-11-19 Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index Mlenga, Daniel H. Jordaan, Andries J. Jamba Original Research The spatiotemporal analysis of drought is of great importance to Eswatini as the country has been facing recurring droughts with negative impacts on agriculture, the environment and the economy. In 2016, the country experienced the most severe drought in over 35 years, resulting in food shortages, drying up of rivers as well as livestock deaths. The frequent occurrence of extreme drought events makes the use of drought indices essential for drought monitoring, early warning and planning. The aim of this study was to assess the applicability of the Standard Precipitation Index (SPI) for near real-time and retrospective drought monitoring in Eswatini. The 3-, 6- and 12-month SPI were computed to analyse the severity and onset of meteorological drought between 1986 and 2017. The results indicated that the climate of Eswatini exhibits geospatial and temporal variability. Droughts intensified in terms of frequency, severity and geospatial coverage, with the worst drought years being 1985–1986, 2005–2006 and 2015–2016 agricultural seasons. Moderate droughts were the most prevalent, while the frequency of severe and very severe droughts was low. Most parts of the country were vulnerable to mild and moderate agricultural droughts. Spatial analysis showed that the most severe and extreme droughts were mostly experienced in the Lowveld and Middleveld agro-ecological zones. The 3-, 6- and 12-month SPI computations conducted in January detected the onset of early season drought, thereby affirming the applicability of the index for monitoring near real-time and retrospective droughts in Eswatini. Drought monitoring using the SPI provides information for early warning, particularly in drought-prone areas, by depicting a drought before the effects are felt. AOSIS 2019-10-24 /pmc/articles/PMC6852612/ /pubmed/31745406 http://dx.doi.org/10.4102/jamba.v11i1.712 Text en © 2019. The Authors https://creativecommons.org/licenses/by/4.0/ Licensee: AOSIS. This work is licensed under the Creative Commons Attribution License. |
spellingShingle | Original Research Mlenga, Daniel H. Jordaan, Andries J. Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index |
title | Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index |
title_full | Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index |
title_fullStr | Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index |
title_full_unstemmed | Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index |
title_short | Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index |
title_sort | monitoring droughts in eswatini: a spatiotemporal variability analysis using the standard precipitation index |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852612/ https://www.ncbi.nlm.nih.gov/pubmed/31745406 http://dx.doi.org/10.4102/jamba.v11i1.712 |
work_keys_str_mv | AT mlengadanielh monitoringdroughtsineswatiniaspatiotemporalvariabilityanalysisusingthestandardprecipitationindex AT jordaanandriesj monitoringdroughtsineswatiniaspatiotemporalvariabilityanalysisusingthestandardprecipitationindex |