Cargando…
Phosphate‐limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation
In tropical and subtropical oceanic surface waters phosphate scarcity can limit microbial productivity. However, these environments also have bioavailable forms of phosphorus incorporated into dissolved organic matter (DOM) that microbes with the necessary transport and hydrolysis metabolic pathways...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852614/ https://www.ncbi.nlm.nih.gov/pubmed/30972938 http://dx.doi.org/10.1111/1462-2920.14628 |
_version_ | 1783469878885220352 |
---|---|
author | Sosa, Oscar A. Repeta, Daniel J. DeLong, Edward F. Ashkezari, Mohammad D. Karl, David M. |
author_facet | Sosa, Oscar A. Repeta, Daniel J. DeLong, Edward F. Ashkezari, Mohammad D. Karl, David M. |
author_sort | Sosa, Oscar A. |
collection | PubMed |
description | In tropical and subtropical oceanic surface waters phosphate scarcity can limit microbial productivity. However, these environments also have bioavailable forms of phosphorus incorporated into dissolved organic matter (DOM) that microbes with the necessary transport and hydrolysis metabolic pathways can access to supplement their phosphorus requirements. In this study we evaluated how the environment shapes the abundance and taxonomic distribution of the bacterial carbon–phosphorus (C–P) lyase pathway, an enzyme complex evolved to extract phosphate from phosphonates. Phosphonates are organophosphorus compounds characterized by a highly stable C–P bond and are enriched in marine DOM. Similar to other known bacterial adaptions to low phosphate environments, C–P lyase was found to become more prevalent as phosphate concentrations decreased. C–P lyase was particularly enriched in the Mediterranean Sea and North Atlantic Ocean, two regions that feature sustained periods of phosphate depletion. In these regions, C–P lyase was prevalent in several lineages of Alphaproteobacteria (Pelagibacter, SAR116, Roseobacter and Rhodospirillales), Gammaproteobacteria, and Actinobacteria. The global scope of this analysis supports previous studies that infer phosphonate catabolism via C–P lyase is an important adaptive strategy implemented by bacteria to alleviate phosphate limitation and expands the known geographic extent and taxonomic affiliation of this metabolic pathway in the ocean. |
format | Online Article Text |
id | pubmed-6852614 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68526142019-11-21 Phosphate‐limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation Sosa, Oscar A. Repeta, Daniel J. DeLong, Edward F. Ashkezari, Mohammad D. Karl, David M. Environ Microbiol Research Articles In tropical and subtropical oceanic surface waters phosphate scarcity can limit microbial productivity. However, these environments also have bioavailable forms of phosphorus incorporated into dissolved organic matter (DOM) that microbes with the necessary transport and hydrolysis metabolic pathways can access to supplement their phosphorus requirements. In this study we evaluated how the environment shapes the abundance and taxonomic distribution of the bacterial carbon–phosphorus (C–P) lyase pathway, an enzyme complex evolved to extract phosphate from phosphonates. Phosphonates are organophosphorus compounds characterized by a highly stable C–P bond and are enriched in marine DOM. Similar to other known bacterial adaptions to low phosphate environments, C–P lyase was found to become more prevalent as phosphate concentrations decreased. C–P lyase was particularly enriched in the Mediterranean Sea and North Atlantic Ocean, two regions that feature sustained periods of phosphate depletion. In these regions, C–P lyase was prevalent in several lineages of Alphaproteobacteria (Pelagibacter, SAR116, Roseobacter and Rhodospirillales), Gammaproteobacteria, and Actinobacteria. The global scope of this analysis supports previous studies that infer phosphonate catabolism via C–P lyase is an important adaptive strategy implemented by bacteria to alleviate phosphate limitation and expands the known geographic extent and taxonomic affiliation of this metabolic pathway in the ocean. John Wiley & Sons, Inc. 2019-05-27 2019-07 /pmc/articles/PMC6852614/ /pubmed/30972938 http://dx.doi.org/10.1111/1462-2920.14628 Text en © 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Sosa, Oscar A. Repeta, Daniel J. DeLong, Edward F. Ashkezari, Mohammad D. Karl, David M. Phosphate‐limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation |
title | Phosphate‐limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation |
title_full | Phosphate‐limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation |
title_fullStr | Phosphate‐limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation |
title_full_unstemmed | Phosphate‐limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation |
title_short | Phosphate‐limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation |
title_sort | phosphate‐limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852614/ https://www.ncbi.nlm.nih.gov/pubmed/30972938 http://dx.doi.org/10.1111/1462-2920.14628 |
work_keys_str_mv | AT sosaoscara phosphatelimitedoceanregionsselectforbacterialpopulationsenrichedinthecarbonphosphoruslyasepathwayforphosphonatedegradation AT repetadanielj phosphatelimitedoceanregionsselectforbacterialpopulationsenrichedinthecarbonphosphoruslyasepathwayforphosphonatedegradation AT delongedwardf phosphatelimitedoceanregionsselectforbacterialpopulationsenrichedinthecarbonphosphoruslyasepathwayforphosphonatedegradation AT ashkezarimohammadd phosphatelimitedoceanregionsselectforbacterialpopulationsenrichedinthecarbonphosphoruslyasepathwayforphosphonatedegradation AT karldavidm phosphatelimitedoceanregionsselectforbacterialpopulationsenrichedinthecarbonphosphoruslyasepathwayforphosphonatedegradation |