Cargando…
Pretraining to Recognize PICO Elements from Randomized Controlled Trial Literature
PICO (Population/problem, Intervention, Comparison, and Outcome) is widely adopted for formulating clinical questions to retrieve evidence from the literature. It plays a crucial role in Evidence-Based Medicine (EBM). This paper contributes a scalable deep learning method to extract PICO statements...
Autores principales: | Kang, Tian, Zou, Shirui, Weng, Chunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852618/ https://www.ncbi.nlm.nih.gov/pubmed/31437911 http://dx.doi.org/10.3233/SHTI190209 |
Ejemplares similares
-
Combining classifiers for robust PICO element detection
por: Boudin, Florian, et al.
Publicado: (2010) -
To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy
por: Srinivasan, Vignesh, et al.
Publicado: (2022) -
Combination of conditional random field with a rule based method in the extraction of PICO elements
por: Chabou, Samir, et al.
Publicado: (2018) -
PICO entity extraction for preclinical animal literature
por: Wang, Qianying, et al.
Publicado: (2022) -
Picos pardos
por: Deniz, Gerardo, 1934-2014
Publicado: (1987)