Cargando…
Comparison Analysis of Linear Discriminant Analysis and Cuckoo-Search Algorithm in the Classification of Breast Cancer from Digital Mammograms
OBJECTIVE: Breast cancer is the most common invasive severity which leads to the second primary cause of death among women. The objective of this paper is to propose a computer-aided approach for the breast cancer classification from the digital mammograms. METHODS: Designing an effective classifica...
Autores principales: | Chakravarthy S R, Sannasi, Rajaguru, Harikumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852837/ https://www.ncbi.nlm.nih.gov/pubmed/31450903 http://dx.doi.org/10.31557/APJCP.2019.20.8.2333 |
Ejemplares similares
-
Analysis of Decision Tree and K-Nearest Neighbor Algorithm in the Classification of Breast Cancer
por: Rajaguru, Harikumar, et al.
Publicado: (2019) -
Efficient Denoising Framework for Mammogram Images with a New Impulse Detector and Non-Local Means
por: Rajaguru, Harikumar, et al.
Publicado: (2020) -
Lung Cancer Detection using Probabilistic Neural Network with modified Crow-Search Algorithm
por: S R, Sannasi Chakravarthy, et al.
Publicado: (2019) -
Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis
por: Suhail, Zobia, et al.
Publicado: (2018) -
Breast Cancer Detection in Mammogram Images Using K–Means++ Clustering Based on Cuckoo Search Optimization
por: Wisaeng, Kittipol
Publicado: (2022)