Cargando…
A 20-bp insertion/deletion (indel) polymorphism within the CDC25A gene and its associations with growth traits in goat
Cell division cycle 25A (CDC25A), a member of the CDC25 family of phosphatases, is required for progression from G1 to the S phase of the cell cycle. CDC25A provides an essential function during early embryonic development in mice, suggesting that it plays an important role in growth and development...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Copernicus GmbH
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852853/ https://www.ncbi.nlm.nih.gov/pubmed/31807646 http://dx.doi.org/10.5194/aab-62-353-2019 |
Sumario: | Cell division cycle 25A (CDC25A), a member of the CDC25 family of phosphatases, is required for progression from G1 to the S phase of the cell cycle. CDC25A provides an essential function during early embryonic development in mice, suggesting that it plays an important role in growth and development. In this study, we used mathematical expectation (ME) methods to identify a 20-bp insertion/deletion (indel) polymorphism of CDC25A gene in Shaanbei White Cashmere (SBWC) goats. We also investigated the association between this 20-bp indel and growth-related traits in SBWC goats. Association results showed that the indel was related to growth traits (height at hip cross, cannon circumference, and cannon circumference index) in SBWC goats. The height at hip cross of individuals with insertion/insertion (II) genotype was higher than those with insertion/deletion (ID) genotype ([Formula: see text]); on the contrary, the cannon circumference and cannon circumference index of individuals with ID genotype were superior when compared with those with II genotype ([Formula: see text] and [Formula: see text]). These findings suggest that the 20-bp indel in the CDC25A gene significantly affects growth-related traits, and could be utilized as a candidate marker for marker-assisted selection (MAS) in the cashmere goat industry. |
---|