Cargando…
Dataset’s chemical diversity limits the generalizability of machine learning predictions
The QM9 dataset has become the golden standard for Machine Learning (ML) predictions of various chemical properties. QM9 is based on the GDB, which is a combinatorial exploration of the chemical space. ML molecular predictions have been recently published with an accuracy on par with Density Functio...
Autores principales: | Glavatskikh, Marta, Leguy, Jules, Hunault, Gilles, Cauchy, Thomas, Da Mota, Benoit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852905/ https://www.ncbi.nlm.nih.gov/pubmed/33430991 http://dx.doi.org/10.1186/s13321-019-0391-2 |
Ejemplares similares
-
Scalable estimator of the diversity for de novo molecular generation resulting in a more robust QM dataset (OD9) and a more efficient molecular optimization
por: Leguy, Jules, et al.
Publicado: (2021) -
EvoMol: a flexible and interpretable evolutionary algorithm for unbiased de novo molecular generation
por: Leguy, Jules, et al.
Publicado: (2020) -
Transition1x - a dataset for building generalizable reactive machine learning potentials
por: Schreiner, Mathias, et al.
Publicado: (2022) -
A high-generalizability machine learning framework for predicting the progression of Alzheimer’s disease using limited data
por: Wang, Caihua, et al.
Publicado: (2022) -
A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets
por: Ham, Dalton T., et al.
Publicado: (2023)