Cargando…

Integrating neurophysiologic relevance feedback in intent modeling for information retrieval

The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data...

Descripción completa

Detalles Bibliográficos
Autores principales: Jacucci, Giulio, Barral, Oswald, Daee, Pedram, Wenzel, Markus, Serim, Baris, Ruotsalo, Tuukka, Pluchino, Patrik, Freeman, Jonathan, Gamberini, Luciano, Kaski, Samuel, Blankertz, Benjamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853416/
https://www.ncbi.nlm.nih.gov/pubmed/31763361
http://dx.doi.org/10.1002/asi.24161
_version_ 1783470031675326464
author Jacucci, Giulio
Barral, Oswald
Daee, Pedram
Wenzel, Markus
Serim, Baris
Ruotsalo, Tuukka
Pluchino, Patrik
Freeman, Jonathan
Gamberini, Luciano
Kaski, Samuel
Blankertz, Benjamin
author_facet Jacucci, Giulio
Barral, Oswald
Daee, Pedram
Wenzel, Markus
Serim, Baris
Ruotsalo, Tuukka
Pluchino, Patrik
Freeman, Jonathan
Gamberini, Luciano
Kaski, Samuel
Blankertz, Benjamin
author_sort Jacucci, Giulio
collection PubMed
description The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first‐of‐its‐kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology‐based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR).
format Online
Article
Text
id pubmed-6853416
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-68534162019-11-21 Integrating neurophysiologic relevance feedback in intent modeling for information retrieval Jacucci, Giulio Barral, Oswald Daee, Pedram Wenzel, Markus Serim, Baris Ruotsalo, Tuukka Pluchino, Patrik Freeman, Jonathan Gamberini, Luciano Kaski, Samuel Blankertz, Benjamin J Assoc Inf Sci Technol Special Issue on Neuro‐information Science The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first‐of‐its‐kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology‐based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR). John Wiley & Sons, Inc. 2019-03-12 2019-09 /pmc/articles/PMC6853416/ /pubmed/31763361 http://dx.doi.org/10.1002/asi.24161 Text en © 2019 The Authors. Journal of the Association for Information Science and Technology published by Wiley Periodicals, Inc. on behalf of ASIS&T. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Special Issue on Neuro‐information Science
Jacucci, Giulio
Barral, Oswald
Daee, Pedram
Wenzel, Markus
Serim, Baris
Ruotsalo, Tuukka
Pluchino, Patrik
Freeman, Jonathan
Gamberini, Luciano
Kaski, Samuel
Blankertz, Benjamin
Integrating neurophysiologic relevance feedback in intent modeling for information retrieval
title Integrating neurophysiologic relevance feedback in intent modeling for information retrieval
title_full Integrating neurophysiologic relevance feedback in intent modeling for information retrieval
title_fullStr Integrating neurophysiologic relevance feedback in intent modeling for information retrieval
title_full_unstemmed Integrating neurophysiologic relevance feedback in intent modeling for information retrieval
title_short Integrating neurophysiologic relevance feedback in intent modeling for information retrieval
title_sort integrating neurophysiologic relevance feedback in intent modeling for information retrieval
topic Special Issue on Neuro‐information Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853416/
https://www.ncbi.nlm.nih.gov/pubmed/31763361
http://dx.doi.org/10.1002/asi.24161
work_keys_str_mv AT jacuccigiulio integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval
AT barraloswald integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval
AT daeepedram integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval
AT wenzelmarkus integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval
AT serimbaris integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval
AT ruotsalotuukka integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval
AT pluchinopatrik integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval
AT freemanjonathan integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval
AT gamberiniluciano integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval
AT kaskisamuel integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval
AT blankertzbenjamin integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval