Cargando…
Integrating neurophysiologic relevance feedback in intent modeling for information retrieval
The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853416/ https://www.ncbi.nlm.nih.gov/pubmed/31763361 http://dx.doi.org/10.1002/asi.24161 |
_version_ | 1783470031675326464 |
---|---|
author | Jacucci, Giulio Barral, Oswald Daee, Pedram Wenzel, Markus Serim, Baris Ruotsalo, Tuukka Pluchino, Patrik Freeman, Jonathan Gamberini, Luciano Kaski, Samuel Blankertz, Benjamin |
author_facet | Jacucci, Giulio Barral, Oswald Daee, Pedram Wenzel, Markus Serim, Baris Ruotsalo, Tuukka Pluchino, Patrik Freeman, Jonathan Gamberini, Luciano Kaski, Samuel Blankertz, Benjamin |
author_sort | Jacucci, Giulio |
collection | PubMed |
description | The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first‐of‐its‐kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology‐based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR). |
format | Online Article Text |
id | pubmed-6853416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68534162019-11-21 Integrating neurophysiologic relevance feedback in intent modeling for information retrieval Jacucci, Giulio Barral, Oswald Daee, Pedram Wenzel, Markus Serim, Baris Ruotsalo, Tuukka Pluchino, Patrik Freeman, Jonathan Gamberini, Luciano Kaski, Samuel Blankertz, Benjamin J Assoc Inf Sci Technol Special Issue on Neuro‐information Science The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first‐of‐its‐kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology‐based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR). John Wiley & Sons, Inc. 2019-03-12 2019-09 /pmc/articles/PMC6853416/ /pubmed/31763361 http://dx.doi.org/10.1002/asi.24161 Text en © 2019 The Authors. Journal of the Association for Information Science and Technology published by Wiley Periodicals, Inc. on behalf of ASIS&T. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Special Issue on Neuro‐information Science Jacucci, Giulio Barral, Oswald Daee, Pedram Wenzel, Markus Serim, Baris Ruotsalo, Tuukka Pluchino, Patrik Freeman, Jonathan Gamberini, Luciano Kaski, Samuel Blankertz, Benjamin Integrating neurophysiologic relevance feedback in intent modeling for information retrieval |
title | Integrating neurophysiologic relevance feedback in intent modeling for information retrieval |
title_full | Integrating neurophysiologic relevance feedback in intent modeling for information retrieval |
title_fullStr | Integrating neurophysiologic relevance feedback in intent modeling for information retrieval |
title_full_unstemmed | Integrating neurophysiologic relevance feedback in intent modeling for information retrieval |
title_short | Integrating neurophysiologic relevance feedback in intent modeling for information retrieval |
title_sort | integrating neurophysiologic relevance feedback in intent modeling for information retrieval |
topic | Special Issue on Neuro‐information Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853416/ https://www.ncbi.nlm.nih.gov/pubmed/31763361 http://dx.doi.org/10.1002/asi.24161 |
work_keys_str_mv | AT jacuccigiulio integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval AT barraloswald integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval AT daeepedram integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval AT wenzelmarkus integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval AT serimbaris integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval AT ruotsalotuukka integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval AT pluchinopatrik integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval AT freemanjonathan integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval AT gamberiniluciano integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval AT kaskisamuel integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval AT blankertzbenjamin integratingneurophysiologicrelevancefeedbackinintentmodelingforinformationretrieval |