Cargando…
A decision-theoretic approach to the evaluation of machine learning algorithms in computational drug discovery
MOTIVATION: Artificial intelligence, trained via machine learning (e.g. neural nets, random forests) or computational statistical algorithms (e.g. support vector machines, ridge regression), holds much promise for the improvement of small-molecule drug discovery. However, small-molecule structure-ac...
Autores principales: | Watson, Oliver P, Cortes-Ciriano, Isidro, Taylor, Aimee R, Watson, James A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853675/ https://www.ncbi.nlm.nih.gov/pubmed/31070704 http://dx.doi.org/10.1093/bioinformatics/btz293 |
Ejemplares similares
-
A semi-supervised learning framework for quantitative structure–activity regression modelling
por: Watson, Oliver, et al.
Publicado: (2020) -
Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data
por: Bender, Andreas, et al.
Publicado: (2021) -
Applications of machine learning in computer-aided drug discovery
por: Turzo, SM Bargeen Alam, et al.
Publicado: (2022) -
The benefits and pitfalls of machine learning for biomarker discovery
por: Ng, Sandra, et al.
Publicado: (2023) -
Machine learning: a theoretical approach
por: Natarajan, Balas K
Publicado: (2014)