Cargando…
Medical Information Extraction Model for User-generated Content
INTRODUCTION: The number of social network users is on the rise, and the size of the user-generated contents is increasing as well. Analyzing the generated contents can lead to the attainment of a vast amount of information, such as users’ feelings on specific products or events, or personal informa...
Autor principal: | Alsheref, Fahad Kamal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academy of Medical sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853723/ https://www.ncbi.nlm.nih.gov/pubmed/31762577 http://dx.doi.org/10.5455/aim.2019.27.192-198 |
Ejemplares similares
-
Automated Prediction of Employee Attrition Using Ensemble Model Based on Machine Learning Algorithms
por: Alsheref, Fahad Kamal, et al.
Publicado: (2022) -
User-Generated Online Health Content: A Survey of Internet Users in the United Kingdom
por: O'Neill, Braden, et al.
Publicado: (2014) -
User Behaviors and User-Generated Content in Chinese Online Health Communities: Comparative Study
por: Lei, Yuqi, et al.
Publicado: (2021) -
Finding Relevant Psychoeducation Content for Adolescents Experiencing Symptoms of Depression: Content Analysis of User-Generated Online Texts
por: Dysthe, Kim K, et al.
Publicado: (2021) -
Mining user generated content
por: Moens, Marie-Francine, et al.
Publicado: (2014)