Cargando…
An innovative magnetic state generator using machine learning techniques
We propose a new efficient algorithm to simulate magnetic structures numerically. It contains a generative model using a complex-valued neural network to generate k-space information. The output information is hermitized and transformed into real-space spin configurations through an inverse fast Fou...
Autores principales: | Kwon, H. Y., Kim, N. J., Lee, C. K., Yoon, H. G., Choi, J. W., Won, C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853879/ https://www.ncbi.nlm.nih.gov/pubmed/31723230 http://dx.doi.org/10.1038/s41598-019-53411-y |
Ejemplares similares
-
Magnetic Hamiltonian parameter estimation using deep learning techniques
por: Kwon, H. Y., et al.
Publicado: (2020) -
Searching for the ground state of complex spin-ice systems using deep learning techniques
por: Kwon, H. Y., et al.
Publicado: (2022) -
Super-resolution of magnetic systems using deep learning
por: Lee, D. B., et al.
Publicado: (2023) -
Estimating the effective fields of spin configurations using a deep learning technique
por: Lee, D. B., et al.
Publicado: (2021) -
Topological magnetic structure generation using VAE-GAN hybrid model and discriminator-driven latent sampling
por: Park, S. M., et al.
Publicado: (2023)