Cargando…
Integrating multi-platform genomic datasets for kidney renal clear cell carcinoma subtyping using stacked denoising autoencoders
Clear cell renal cell carcinoma (ccRCC) is highly heterogeneous and is the most lethal cancer of all urologic cancers. We developed an unsupervised deep learning method, stacked denoising autoencoders (SdA), by integrating multi-platform genomic data for subtyping ccRCC with the goal of assisting di...
Autores principales: | Gu, Tongjun, Zhao, Xiwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853929/ https://www.ncbi.nlm.nih.gov/pubmed/31723226 http://dx.doi.org/10.1038/s41598-019-53048-x |
Ejemplares similares
-
Author Correction: Integrating multi-platform genomic datasets for kidney renal clear cell carcinoma subtyping using stacked denoising autoencoders
por: Gu, Tongjun, et al.
Publicado: (2019) -
Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder
por: Li, Zexin, et al.
Publicado: (2020) -
Marginalised Stacked Denoising Autoencoders for Robust Representation of Real-Time Multi-View Action Recognition
por: Gu, Feng, et al.
Publicado: (2015) -
Leveraging Wearable Sensors for Human Daily Activity Recognition with Stacked Denoising Autoencoders
por: Ni, Qin, et al.
Publicado: (2020) -
Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Stacked Denoising Autoencoder
por: Xu, Xiaowei, et al.
Publicado: (2021)