Cargando…
Optical vector analysis with attometer resolution, 90-dB dynamic range and THz bandwidth
Optical vector analysis (OVA) capable of achieving magnitude and phase responses is essential for the fabrication and application of emerging optical devices. Conventional OVA often has to make compromises among resolution, dynamic range, and bandwidth. Here we show an original method to meet the me...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853945/ https://www.ncbi.nlm.nih.gov/pubmed/31723128 http://dx.doi.org/10.1038/s41467-019-13129-x |
Sumario: | Optical vector analysis (OVA) capable of achieving magnitude and phase responses is essential for the fabrication and application of emerging optical devices. Conventional OVA often has to make compromises among resolution, dynamic range, and bandwidth. Here we show an original method to meet the measurement requirements for ultra-wide bandwidth, ultra-high resolution, and ultra-large dynamic range simultaneously, based on an asymmetric optical probe signal generator (ASG) and receiver (ASR). The ASG and ASR remove the measurement errors introduced by the modulation nonlinearity and enable an ultra-large dynamic range. Thanks to the wavelength-independence of the ASG and ASR, the measurement range can increase by 2 N times by applying an N-tone optical frequency comb without complicated operation. In an experiment, OVA with a resolution of 334 Hz (2.67 attometer in the 1550-nm band), a dynamic range of > 90 dB and a measurement range of 1.075 THz is demonstrated. |
---|