Cargando…

Exendin-4 promotes osteogenic differentiation of adipose-derived stem cells and facilitates bone repair

Inflammation-related bone defects pose a heavy burden on patients and orthopedic surgeons. Although stem-cell-based bone repair has developed rapidly, it is of great significance to characterize bio-active molecules that facilitate bone regeneration. It is reported that a glucagon-like peptide 1 rec...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Banglian, Zhu, Wenzhong, Duan, Yansheng, Hu, Yuqian, Chen, Xuefeng, Song, Shuang, Yi, Zian, Song, Yingliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854547/
https://www.ncbi.nlm.nih.gov/pubmed/31661134
http://dx.doi.org/10.3892/mmr.2019.10764
Descripción
Sumario:Inflammation-related bone defects pose a heavy burden on patients and orthopedic surgeons. Although stem-cell-based bone repair has developed rapidly, it is of great significance to characterize bio-active molecules that facilitate bone regeneration. It is reported that a glucagon-like peptide 1 receptor agonist, exendin-4, promoted bone regeneration mediated by the transplantation of adipose-derived stem cells in a metaphyseal defect mouse model of femur injury. However, the underlying mechanism is unclear. Bone imaging, immunohistochemistry real-time PCR and western blot analysis were used in the present study, and the results revealed that exendin-4 increased the transcription of the osteogenic differentiation-related genes and induced osteogenic differentiation in situ. Furthermore, the present data obtained from sorted adipose-derived stem cells revealed that exendin-4 promoted osteogenic differentiation and inhibited adipogenic differentiation in vitro. These findings indicated that exendin-4 facilitates osteogenic differentiation of transplanted adipose-derived stem cells for bone repair and illuminated clinical prospects of both adipose-derived stem cells and exendin-4 in stem-cell-based bone defect repair.