Cargando…
Exendin-4 promotes osteogenic differentiation of adipose-derived stem cells and facilitates bone repair
Inflammation-related bone defects pose a heavy burden on patients and orthopedic surgeons. Although stem-cell-based bone repair has developed rapidly, it is of great significance to characterize bio-active molecules that facilitate bone regeneration. It is reported that a glucagon-like peptide 1 rec...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854547/ https://www.ncbi.nlm.nih.gov/pubmed/31661134 http://dx.doi.org/10.3892/mmr.2019.10764 |
Sumario: | Inflammation-related bone defects pose a heavy burden on patients and orthopedic surgeons. Although stem-cell-based bone repair has developed rapidly, it is of great significance to characterize bio-active molecules that facilitate bone regeneration. It is reported that a glucagon-like peptide 1 receptor agonist, exendin-4, promoted bone regeneration mediated by the transplantation of adipose-derived stem cells in a metaphyseal defect mouse model of femur injury. However, the underlying mechanism is unclear. Bone imaging, immunohistochemistry real-time PCR and western blot analysis were used in the present study, and the results revealed that exendin-4 increased the transcription of the osteogenic differentiation-related genes and induced osteogenic differentiation in situ. Furthermore, the present data obtained from sorted adipose-derived stem cells revealed that exendin-4 promoted osteogenic differentiation and inhibited adipogenic differentiation in vitro. These findings indicated that exendin-4 facilitates osteogenic differentiation of transplanted adipose-derived stem cells for bone repair and illuminated clinical prospects of both adipose-derived stem cells and exendin-4 in stem-cell-based bone defect repair. |
---|