Cargando…
A Nitrogen- and Self-Doped Titania Coating Enables the On-Demand Release of Free Radical Species
[Image: see text] For potential applications such as suppressing the onset of peri-implant infections, a doped titania coating was developed to induce free radical release because of its ability for microbial elimination. The coatability of the sol–gel precursor is robust since the suspension’s rheo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854566/ https://www.ncbi.nlm.nih.gov/pubmed/31737815 http://dx.doi.org/10.1021/acsomega.9b02188 |
_version_ | 1783470233123553280 |
---|---|
author | Chen, Xin Zhang, Yulong Wu, Benjamin Sant, Gaurav |
author_facet | Chen, Xin Zhang, Yulong Wu, Benjamin Sant, Gaurav |
author_sort | Chen, Xin |
collection | PubMed |
description | [Image: see text] For potential applications such as suppressing the onset of peri-implant infections, a doped titania coating was developed to induce free radical release because of its ability for microbial elimination. The coatability of the sol–gel precursor is robust since the suspension’s rheology can be modified to attain uniform and complete surface coverage. The coating is composed of a mixture of anatase and rutile polymorphs doped with nitrogen (N(3–)), and it contains substoichiometric Ti(2+) and Ti(3+) species. Nitrogen doping results in a 0.4 eV band gap shift, while the defects induce photocurrent generation under visible light excitation up to 650 nm. Greater currents were observed in the nitrogen-doped titania at wavelengths above 450 nm vis-à-vis its (singularly) self-doped counterparts. The (photo)electrochemical behavior and photoactivity of the coating were evaluated by assessing redox species formation in a background aqueous solution. In the absence of any illumination, the coating behaved as an insulator and inhibited the activities of both oxidative and reductive species. On the other hand, under illumination, the coating enhances oxidation processes and inhibits reduction reactions within a near-field region wherein release of free radicals occurs and is constrained (delimited). |
format | Online Article Text |
id | pubmed-6854566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-68545662019-11-15 A Nitrogen- and Self-Doped Titania Coating Enables the On-Demand Release of Free Radical Species Chen, Xin Zhang, Yulong Wu, Benjamin Sant, Gaurav ACS Omega [Image: see text] For potential applications such as suppressing the onset of peri-implant infections, a doped titania coating was developed to induce free radical release because of its ability for microbial elimination. The coatability of the sol–gel precursor is robust since the suspension’s rheology can be modified to attain uniform and complete surface coverage. The coating is composed of a mixture of anatase and rutile polymorphs doped with nitrogen (N(3–)), and it contains substoichiometric Ti(2+) and Ti(3+) species. Nitrogen doping results in a 0.4 eV band gap shift, while the defects induce photocurrent generation under visible light excitation up to 650 nm. Greater currents were observed in the nitrogen-doped titania at wavelengths above 450 nm vis-à-vis its (singularly) self-doped counterparts. The (photo)electrochemical behavior and photoactivity of the coating were evaluated by assessing redox species formation in a background aqueous solution. In the absence of any illumination, the coating behaved as an insulator and inhibited the activities of both oxidative and reductive species. On the other hand, under illumination, the coating enhances oxidation processes and inhibits reduction reactions within a near-field region wherein release of free radicals occurs and is constrained (delimited). American Chemical Society 2019-11-01 /pmc/articles/PMC6854566/ /pubmed/31737815 http://dx.doi.org/10.1021/acsomega.9b02188 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Chen, Xin Zhang, Yulong Wu, Benjamin Sant, Gaurav A Nitrogen- and Self-Doped Titania Coating Enables the On-Demand Release of Free Radical Species |
title | A Nitrogen- and Self-Doped Titania Coating Enables
the On-Demand Release of Free Radical Species |
title_full | A Nitrogen- and Self-Doped Titania Coating Enables
the On-Demand Release of Free Radical Species |
title_fullStr | A Nitrogen- and Self-Doped Titania Coating Enables
the On-Demand Release of Free Radical Species |
title_full_unstemmed | A Nitrogen- and Self-Doped Titania Coating Enables
the On-Demand Release of Free Radical Species |
title_short | A Nitrogen- and Self-Doped Titania Coating Enables
the On-Demand Release of Free Radical Species |
title_sort | nitrogen- and self-doped titania coating enables
the on-demand release of free radical species |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854566/ https://www.ncbi.nlm.nih.gov/pubmed/31737815 http://dx.doi.org/10.1021/acsomega.9b02188 |
work_keys_str_mv | AT chenxin anitrogenandselfdopedtitaniacoatingenablestheondemandreleaseoffreeradicalspecies AT zhangyulong anitrogenandselfdopedtitaniacoatingenablestheondemandreleaseoffreeradicalspecies AT wubenjamin anitrogenandselfdopedtitaniacoatingenablestheondemandreleaseoffreeradicalspecies AT santgaurav anitrogenandselfdopedtitaniacoatingenablestheondemandreleaseoffreeradicalspecies AT chenxin nitrogenandselfdopedtitaniacoatingenablestheondemandreleaseoffreeradicalspecies AT zhangyulong nitrogenandselfdopedtitaniacoatingenablestheondemandreleaseoffreeradicalspecies AT wubenjamin nitrogenandselfdopedtitaniacoatingenablestheondemandreleaseoffreeradicalspecies AT santgaurav nitrogenandselfdopedtitaniacoatingenablestheondemandreleaseoffreeradicalspecies |