Cargando…

SSTR5-AS1 functions as a ceRNA to regulate CA2 by sponging miR-15b-5p for the development and prognosis of HBV-related hepatocellular carcinoma

Long non-coding RNAs (lncRNAs) have been implicated in the development and progression of cancer. However, the mechanisms of lncRNAs in hepatitis B virus (HBV) infection-induced hepatocellular carcinoma (HCC) remain unclear. The study aimed to reveal the roles of lncRNAs for HBV-HCC based on the hyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jing, Zhang, Jing, Shan, Fenglian, Wen, Jie, Wang, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854603/
https://www.ncbi.nlm.nih.gov/pubmed/31638225
http://dx.doi.org/10.3892/mmr.2019.10736
_version_ 1783470241825685504
author Xu, Jing
Zhang, Jing
Shan, Fenglian
Wen, Jie
Wang, Yue
author_facet Xu, Jing
Zhang, Jing
Shan, Fenglian
Wen, Jie
Wang, Yue
author_sort Xu, Jing
collection PubMed
description Long non-coding RNAs (lncRNAs) have been implicated in the development and progression of cancer. However, the mechanisms of lncRNAs in hepatitis B virus (HBV) infection-induced hepatocellular carcinoma (HCC) remain unclear. The study aimed to reveal the roles of lncRNAs for HBV-HCC based on the hypothesis of competing endogenous RNA (ceRNA). The lncRNA (GSE27462), miRNA (GSE76903) and mRNA (GSE121248) expression profiles were collected from the Gene Expression Omnibus database. Differentially expressed lncRNAs (DELs), genes (DEGs) and miRNAs (DEMs) were identified using the LIMMA or EdgeR package, respectively. The ceRNA network was constructed based on interaction pairs between miRNAs and mRNAs/lncRNAs. The functions of DEGs in the ceRNA network were predicted using the DAVID database, which was overlapped with the known HCC pathways of Comparative Toxicogenomics Database (CTD) to construct the HCC-related ceRNA network. The prognosis values [overall survival, (OS); recurrence-free survival (RFS)] of genes were validated using the Cancer Genome Atlas (TCGA) data with Cox regression analysis. The present study screened 38 DELs, 127 DEMs and 721 DEGs. A ceRNA network was constructed among 17 DELs, 12 DEMs and 173 DEGs, including the FAM138B-hsa-miR-30c-CCNE2/RRM2 and SSTR5-AS1-hsa-miR-15b-5p-CA2 ceRNA axes. Function enrichment analysis revealed the genes in the ceRNA network that participated in the p53 signaling pathway [cyclin E2 (CCNE2), ribonucleotide reductase M2 subunit (RRM2)] and nitrogen metabolism [carbonic anhydrase 2 (CA2)], which were also included in the pathways of the CTD. Univariate Cox regression analysis revealed that six RNAs (2 DELs: FAM138B, SSTR5-AS1; 2 DEMs: hsa-miR-149, hsa-miR-7; 2 DEGs: CCNE2, RRM2) were significantly associated with OS; while seven RNAs (1 DEL: LINC00284; 3 DEMs: hsa-miR-7, hsa-miR-15b, hsa-miR-30c-2; and 3 DEGs: RRM2, CCNE2, CA2) were significantly associated with RFS. In conclusion, FAM138B-hsa-miR-30c-CCNE2/RRM2 and the SSTR5-AS1-hsa-miR-15b-5p-CA2 ceRNA axes may be important mechanisms for HBV-related HCC.
format Online
Article
Text
id pubmed-6854603
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-68546032019-11-21 SSTR5-AS1 functions as a ceRNA to regulate CA2 by sponging miR-15b-5p for the development and prognosis of HBV-related hepatocellular carcinoma Xu, Jing Zhang, Jing Shan, Fenglian Wen, Jie Wang, Yue Mol Med Rep Articles Long non-coding RNAs (lncRNAs) have been implicated in the development and progression of cancer. However, the mechanisms of lncRNAs in hepatitis B virus (HBV) infection-induced hepatocellular carcinoma (HCC) remain unclear. The study aimed to reveal the roles of lncRNAs for HBV-HCC based on the hypothesis of competing endogenous RNA (ceRNA). The lncRNA (GSE27462), miRNA (GSE76903) and mRNA (GSE121248) expression profiles were collected from the Gene Expression Omnibus database. Differentially expressed lncRNAs (DELs), genes (DEGs) and miRNAs (DEMs) were identified using the LIMMA or EdgeR package, respectively. The ceRNA network was constructed based on interaction pairs between miRNAs and mRNAs/lncRNAs. The functions of DEGs in the ceRNA network were predicted using the DAVID database, which was overlapped with the known HCC pathways of Comparative Toxicogenomics Database (CTD) to construct the HCC-related ceRNA network. The prognosis values [overall survival, (OS); recurrence-free survival (RFS)] of genes were validated using the Cancer Genome Atlas (TCGA) data with Cox regression analysis. The present study screened 38 DELs, 127 DEMs and 721 DEGs. A ceRNA network was constructed among 17 DELs, 12 DEMs and 173 DEGs, including the FAM138B-hsa-miR-30c-CCNE2/RRM2 and SSTR5-AS1-hsa-miR-15b-5p-CA2 ceRNA axes. Function enrichment analysis revealed the genes in the ceRNA network that participated in the p53 signaling pathway [cyclin E2 (CCNE2), ribonucleotide reductase M2 subunit (RRM2)] and nitrogen metabolism [carbonic anhydrase 2 (CA2)], which were also included in the pathways of the CTD. Univariate Cox regression analysis revealed that six RNAs (2 DELs: FAM138B, SSTR5-AS1; 2 DEMs: hsa-miR-149, hsa-miR-7; 2 DEGs: CCNE2, RRM2) were significantly associated with OS; while seven RNAs (1 DEL: LINC00284; 3 DEMs: hsa-miR-7, hsa-miR-15b, hsa-miR-30c-2; and 3 DEGs: RRM2, CCNE2, CA2) were significantly associated with RFS. In conclusion, FAM138B-hsa-miR-30c-CCNE2/RRM2 and the SSTR5-AS1-hsa-miR-15b-5p-CA2 ceRNA axes may be important mechanisms for HBV-related HCC. D.A. Spandidos 2019-12 2019-10-11 /pmc/articles/PMC6854603/ /pubmed/31638225 http://dx.doi.org/10.3892/mmr.2019.10736 Text en Copyright: © Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Xu, Jing
Zhang, Jing
Shan, Fenglian
Wen, Jie
Wang, Yue
SSTR5-AS1 functions as a ceRNA to regulate CA2 by sponging miR-15b-5p for the development and prognosis of HBV-related hepatocellular carcinoma
title SSTR5-AS1 functions as a ceRNA to regulate CA2 by sponging miR-15b-5p for the development and prognosis of HBV-related hepatocellular carcinoma
title_full SSTR5-AS1 functions as a ceRNA to regulate CA2 by sponging miR-15b-5p for the development and prognosis of HBV-related hepatocellular carcinoma
title_fullStr SSTR5-AS1 functions as a ceRNA to regulate CA2 by sponging miR-15b-5p for the development and prognosis of HBV-related hepatocellular carcinoma
title_full_unstemmed SSTR5-AS1 functions as a ceRNA to regulate CA2 by sponging miR-15b-5p for the development and prognosis of HBV-related hepatocellular carcinoma
title_short SSTR5-AS1 functions as a ceRNA to regulate CA2 by sponging miR-15b-5p for the development and prognosis of HBV-related hepatocellular carcinoma
title_sort sstr5-as1 functions as a cerna to regulate ca2 by sponging mir-15b-5p for the development and prognosis of hbv-related hepatocellular carcinoma
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854603/
https://www.ncbi.nlm.nih.gov/pubmed/31638225
http://dx.doi.org/10.3892/mmr.2019.10736
work_keys_str_mv AT xujing sstr5as1functionsasacernatoregulateca2byspongingmir15b5pforthedevelopmentandprognosisofhbvrelatedhepatocellularcarcinoma
AT zhangjing sstr5as1functionsasacernatoregulateca2byspongingmir15b5pforthedevelopmentandprognosisofhbvrelatedhepatocellularcarcinoma
AT shanfenglian sstr5as1functionsasacernatoregulateca2byspongingmir15b5pforthedevelopmentandprognosisofhbvrelatedhepatocellularcarcinoma
AT wenjie sstr5as1functionsasacernatoregulateca2byspongingmir15b5pforthedevelopmentandprognosisofhbvrelatedhepatocellularcarcinoma
AT wangyue sstr5as1functionsasacernatoregulateca2byspongingmir15b5pforthedevelopmentandprognosisofhbvrelatedhepatocellularcarcinoma