Cargando…

A gastric cancer LncRNAs model for MSI and survival prediction based on support vector machine

BACKGROUND: Recent studies have shown that long non-coding RNAs (lncRNAs) play a crucial role in the induction of cancer through epigenetic regulation, transcriptional regulation, post-transcriptional regulation and other aspects, thus participating in various biological processes such as cell proli...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Tao, Zhang, Cangui, Liu, Yingqiao, Zhao, Yuyun, Lin, Dingyi, Hu, Yanfeng, Yu, Jiang, Li, Guoxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854775/
https://www.ncbi.nlm.nih.gov/pubmed/31722674
http://dx.doi.org/10.1186/s12864-019-6135-x
Descripción
Sumario:BACKGROUND: Recent studies have shown that long non-coding RNAs (lncRNAs) play a crucial role in the induction of cancer through epigenetic regulation, transcriptional regulation, post-transcriptional regulation and other aspects, thus participating in various biological processes such as cell proliferation, differentiation and apoptosis. As a new nova of anti-tumor therapy, immunotherapy has been shown to be effective in many tumors of which PD-1/PD-L1 monoclonal antibodies has been proofed to increase overall survival rate in advanced gastric cancer (GC). Microsatellite instability (MSI) was known as a biomarker of response to PD-1/PD-L1 monoclonal antibodies therapy. The aim of this study was to identify lncRNAs signatures able to classify MSI status and create a predictive model associated with MSI for GC patients. METHODS: Using the data of Stomach adenocarcinoma from The Cancer Genome Atlas (TCGA), we developed and validated a lncRNAs model for automatic MSI classification using a machine learning technology – support vector machine (SVM). The C-index was adopted to evaluate its accuracy. The prognostic values of overall survival (OS) and disease-free survival (DFS) were also assessed in this model. RESULTS: Using the SVM, a lncRNAs model was established consisting of 16 lncRNA features. In the training cohort with 94 GC patients, accuracy was confirmed with AUC 0.976 (95% CI, 0.952 to 0.999). Veracity was also confirmed in the validation cohort (40 GC patients) with AUC 0.950 (0.889 to 0.999). High predicted score was correlated with better DFS in the patients with stage I-III and lower OS with stage I-IV. CONCLUSION: This study identify 16 LncRNAs signatures able to classify MSI status. The correlation between lncRNAs and MSI status indicates the potential roles of lncRNAs interacting in immunotherapy for GC patients. The pathway of these lncRNAs which might be a target in PD-1/PD-L1 immunotherapy are needed to be further study.