Cargando…
Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress
BACKGROUND: Eupatilin, an active flavone separated from Artemisia species, has various biological activity such as anti-inflammatory activity. The aim of the present study was to find out the influence of eupatilin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. MATERIAL/METHODS...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854882/ https://www.ncbi.nlm.nih.gov/pubmed/31680664 http://dx.doi.org/10.12659/MSM.917406 |
_version_ | 1783470303350882304 |
---|---|
author | Liu, Haiying Hao, Jindou Wu, Chunyuan Liu, Guosheng Wang, Xing Yu, Jieming Liu, Yu Zhao, Hongxia |
author_facet | Liu, Haiying Hao, Jindou Wu, Chunyuan Liu, Guosheng Wang, Xing Yu, Jieming Liu, Yu Zhao, Hongxia |
author_sort | Liu, Haiying |
collection | PubMed |
description | BACKGROUND: Eupatilin, an active flavone separated from Artemisia species, has various biological activity such as anti-inflammatory activity. The aim of the present study was to find out the influence of eupatilin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. MATERIAL/METHODS: The administration of LPS was used to induce ALI; eupatilin was given 1 hour before the LPS administration. Lung structural damage of rats was analyzed by hematoxylin and eosin staining and the wet/dry lung ratio. The related inflammatory factors and lung injury markers were examined by enzyme-linked immunosorbent assay. The oxidative stress factors were analyzed by corresponding kits. The expression of peroxisome proliferator-activated receptor-α (PPAR-α) was assayed by western blot and immunohistochemical staining. RESULTS: The results showed that eupatilin alleviated LPS-induced structural damage and decreased the wet/dry lung ratio concentration-dependently. Eupatilin decreased the level of surfactant protein (SP)-A, SP-D, and inflammatory factors such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and monocyte chemo-attractant protein (MCP)-1. LPS trigged nitric oxide (NO) generation, improved the production of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and decreased the activity of superoxide dismutase (SOD), which were reversed when rats treated with eupatilin in a concentration-dependent way. Besides, the expression of PPAR-α was increased under the treatment of eupatilin. CONCLUSIONS: Collectively, eupatilin alleviated LPS-induced ALI through inhibiting inflammation and oxidative stress in a concentration-dependent way, which was likely to be closely related with the activation of PPAR-α. |
format | Online Article Text |
id | pubmed-6854882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68548822019-11-19 Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress Liu, Haiying Hao, Jindou Wu, Chunyuan Liu, Guosheng Wang, Xing Yu, Jieming Liu, Yu Zhao, Hongxia Med Sci Monit Clinical Research BACKGROUND: Eupatilin, an active flavone separated from Artemisia species, has various biological activity such as anti-inflammatory activity. The aim of the present study was to find out the influence of eupatilin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. MATERIAL/METHODS: The administration of LPS was used to induce ALI; eupatilin was given 1 hour before the LPS administration. Lung structural damage of rats was analyzed by hematoxylin and eosin staining and the wet/dry lung ratio. The related inflammatory factors and lung injury markers were examined by enzyme-linked immunosorbent assay. The oxidative stress factors were analyzed by corresponding kits. The expression of peroxisome proliferator-activated receptor-α (PPAR-α) was assayed by western blot and immunohistochemical staining. RESULTS: The results showed that eupatilin alleviated LPS-induced structural damage and decreased the wet/dry lung ratio concentration-dependently. Eupatilin decreased the level of surfactant protein (SP)-A, SP-D, and inflammatory factors such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and monocyte chemo-attractant protein (MCP)-1. LPS trigged nitric oxide (NO) generation, improved the production of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and decreased the activity of superoxide dismutase (SOD), which were reversed when rats treated with eupatilin in a concentration-dependent way. Besides, the expression of PPAR-α was increased under the treatment of eupatilin. CONCLUSIONS: Collectively, eupatilin alleviated LPS-induced ALI through inhibiting inflammation and oxidative stress in a concentration-dependent way, which was likely to be closely related with the activation of PPAR-α. International Scientific Literature, Inc. 2019-11-04 /pmc/articles/PMC6854882/ /pubmed/31680664 http://dx.doi.org/10.12659/MSM.917406 Text en © Med Sci Monit, 2019 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Clinical Research Liu, Haiying Hao, Jindou Wu, Chunyuan Liu, Guosheng Wang, Xing Yu, Jieming Liu, Yu Zhao, Hongxia Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress |
title | Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress |
title_full | Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress |
title_fullStr | Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress |
title_full_unstemmed | Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress |
title_short | Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress |
title_sort | eupatilin alleviates lipopolysaccharide-induced acute lung injury by inhibiting inflammation and oxidative stress |
topic | Clinical Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854882/ https://www.ncbi.nlm.nih.gov/pubmed/31680664 http://dx.doi.org/10.12659/MSM.917406 |
work_keys_str_mv | AT liuhaiying eupatilinalleviateslipopolysaccharideinducedacutelunginjurybyinhibitinginflammationandoxidativestress AT haojindou eupatilinalleviateslipopolysaccharideinducedacutelunginjurybyinhibitinginflammationandoxidativestress AT wuchunyuan eupatilinalleviateslipopolysaccharideinducedacutelunginjurybyinhibitinginflammationandoxidativestress AT liuguosheng eupatilinalleviateslipopolysaccharideinducedacutelunginjurybyinhibitinginflammationandoxidativestress AT wangxing eupatilinalleviateslipopolysaccharideinducedacutelunginjurybyinhibitinginflammationandoxidativestress AT yujieming eupatilinalleviateslipopolysaccharideinducedacutelunginjurybyinhibitinginflammationandoxidativestress AT liuyu eupatilinalleviateslipopolysaccharideinducedacutelunginjurybyinhibitinginflammationandoxidativestress AT zhaohongxia eupatilinalleviateslipopolysaccharideinducedacutelunginjurybyinhibitinginflammationandoxidativestress |