Cargando…

Using Network Pharmacology to Explore Potential Treatment Mechanism for Coronary Heart Disease Using Chuanxiong and Jiangxiang Essential Oils in Jingzhi Guanxin Prescriptions

BACKGROUND: To predict the active components and potential targets of traditional Chinese medicine and to determine the mechanism behind the curative effect of traditional Chinese medicine, a multitargeted method was used. Jingzhi Guanxin prescriptions expressed a high efficacy for coronary heart di...

Descripción completa

Detalles Bibliográficos
Autores principales: Tai, Jia, Zou, Junbo, Zhang, Xiaofei, Wang, Yu, Liang, Yulin, Guo, Dongyan, Wang, Mei, Cui, Chunli, Wang, Jing, Cheng, Jiangxue, Shi, Yajun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854988/
https://www.ncbi.nlm.nih.gov/pubmed/31772600
http://dx.doi.org/10.1155/2019/7631365
Descripción
Sumario:BACKGROUND: To predict the active components and potential targets of traditional Chinese medicine and to determine the mechanism behind the curative effect of traditional Chinese medicine, a multitargeted method was used. Jingzhi Guanxin prescriptions expressed a high efficacy for coronary heart disease (CHD) patients of which essential oils from Chuanxiong and Jiangxiang were confirmed to be the most important effective substance. However, the interaction between the active components and the targets for the treatment of CHD has not been clearly explained in previous studies. MATERIALS AND METHODS: Genes associated with the disease and the treatment strategy were searched from the electronic database and analyzed by Cytoscape (version 3.2.1). Protein-protein interaction network diagram of CHD with Jiangxiang and Chuanxiong essential oils was constructed by Cytoscape. Pathway functional enrichment analysis was executed by clusterProfiler package in R platform. RESULTS: 121 ingredients of Chuanxiong and Jiangxiang essential oils were analyzed, and 393 target genes of the compositions and 912 CHD-related genes were retrieved. 15 coexpression genes were selected, including UGT1A1, DPP4, RXRA, ADH1A, RXRG, UGT1A3, PPARA, TRPC3, CYP1A1, ABCC2, AHR, and ADRA2A. The crucial pathways of occurrence and treatment molecular mechanism of CHD were analyzed, including retinoic acid metabolic process, flavonoid metabolic process, response to xenobiotic stimulus, cellular response to xenobiotic stimulus, cellular response to steroid hormone stimulus, retinoid binding, retinoic acid binding, and monocarboxylic acid binding. Finally, we elucidate the underlying role and mechanism behind these genes in the pathogenesis and treatment of CHD. CONCLUSIONS: Generally speaking, the nodes in subnetwork affect the pathological process of CHD, thus indicating the mechanism of Jingzhi Guanxin prescriptions containing Chuanxiong and Jiangxiang essential oils in the treatment of CHD.