Cargando…
Kinesin Family Member 18A (KIF18A) Contributes to the Proliferation, Migration, and Invasion of Lung Adenocarcinoma Cells In Vitro and In Vivo
OBJECTIVE: To determine the expression levels of KIF18A in lung adenocarcinoma and its relationship with the clinicopathologic features of patients undergoing radical colectomy and explore the potential role in the progression of lung adenocarcinoma. METHODS: Immunohistochemical assays were performe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854991/ https://www.ncbi.nlm.nih.gov/pubmed/31772692 http://dx.doi.org/10.1155/2019/6383685 |
Sumario: | OBJECTIVE: To determine the expression levels of KIF18A in lung adenocarcinoma and its relationship with the clinicopathologic features of patients undergoing radical colectomy and explore the potential role in the progression of lung adenocarcinoma. METHODS: Immunohistochemical assays were performed to explore the expression levels of KIF18A in 82 samples of lung adenocarcinoma and corresponding normal tissues. According to the levels of KIF18A expression in lung adenocarcinoma tissue samples, patients were classified into the KIF18A high expression group and low expression group. Clinical data related to the perioperative clinical features (age, gender, smoking, tumor size, differentiation, clinical stage, and lymph node metastasis), the potential correlation between KIF18A expression levels, and clinical features were analyzed, and the effects of KIF18A on lung adenocarcinoma cell proliferation, migration, and invasion were measured by colony formation assay, MTT assay, wound healing assay, and transwell assays. The possible effects of KIF18A on tumor growth and metastasis were measured in mice through tumor growth and tumor metastasis assays in vivo. RESULTS: KIF18A in lung adenocarcinoma tissues. Further, KIF18A was significantly associated to clinical characteristic features including the tumor size (P = 0.033) and clinical stage (P = 0.041) of patients with lung adenocarcinoma. Our data also investigated that KIF18A depletion dramatically impairs the proliferation, migration, and invasion capacity of lung adenocarcinoma cells in vitro and inhibits tumor growth and metastasis in mice. CONCLUSIONS: Our study reveals the involvement of KIF18A in the progression and metastasis of lung adenocarcinoma and provides a novel therapeutic target for the treatment of lung adenocarcinoma. |
---|