Cargando…
A Cascaded Convolutional Neural Network for Assessing Signal Quality of Dynamic ECG
Motion artifacts and myoelectrical noise are common issues complicating the collection and processing of dynamic electrocardiogram (ECG) signals. Recent signal quality studies have utilized a binary classification metric in which ECG samples are determined to either be clean or noisy. However, the c...
Autores principales: | Zhang, Qifei, Fu, Lingjian, Gu, Linyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855083/ https://www.ncbi.nlm.nih.gov/pubmed/31781289 http://dx.doi.org/10.1155/2019/7095137 |
Ejemplares similares
-
Interpatient ECG Heartbeat Classification with an Adversarial Convolutional Neural Network
por: Zhang, Jing, et al.
Publicado: (2021) -
A Study on Arrhythmia via ECG Signal Classification Using the Convolutional Neural Network
por: Wu, Mengze, et al.
Publicado: (2021) -
An ECG Heartbeat Classification Method Based on Deep Convolutional Neural Network
por: Zhang, Dengqing, et al.
Publicado: (2021) -
Multi-Channel Fetal ECG Denoising With Deep Convolutional Neural Networks
por: Fotiadou, Eleni, et al.
Publicado: (2020) -
Detection of myocardial ischemia by intracoronary ECG using convolutional neural networks
por: Bigler, Marius Reto, et al.
Publicado: (2021)