Cargando…

A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography

BACKGROUND: Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved i...

Descripción completa

Detalles Bibliográficos
Autores principales: Oikonomou, Evangelos K, Williams, Michelle C, Kotanidis, Christos P, Desai, Milind Y, Marwan, Mohamed, Antonopoulos, Alexios S, Thomas, Katharine E, Thomas, Sheena, Akoumianakis, Ioannis, Fan, Lampson M, Kesavan, Sujatha, Herdman, Laura, Alashi, Alaa, Centeno, Erika Hutt, Lyasheva, Maria, Griffin, Brian P, Flamm, Scott D, Shirodaria, Cheerag, Sabharwal, Nikant, Kelion, Andrew, Dweck, Marc R, Van Beek, Edwin J R, Deanfield, John, Hopewell, Jemma C, Neubauer, Stefan, Channon, Keith M, Achenbach, Stephan, Newby, David E, Antoniades, Charalambos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855141/
https://www.ncbi.nlm.nih.gov/pubmed/31504423
http://dx.doi.org/10.1093/eurheartj/ehz592
_version_ 1783470354380881920
author Oikonomou, Evangelos K
Williams, Michelle C
Kotanidis, Christos P
Desai, Milind Y
Marwan, Mohamed
Antonopoulos, Alexios S
Thomas, Katharine E
Thomas, Sheena
Akoumianakis, Ioannis
Fan, Lampson M
Kesavan, Sujatha
Herdman, Laura
Alashi, Alaa
Centeno, Erika Hutt
Lyasheva, Maria
Griffin, Brian P
Flamm, Scott D
Shirodaria, Cheerag
Sabharwal, Nikant
Kelion, Andrew
Dweck, Marc R
Van Beek, Edwin J R
Deanfield, John
Hopewell, Jemma C
Neubauer, Stefan
Channon, Keith M
Achenbach, Stephan
Newby, David E
Antoniades, Charalambos
author_facet Oikonomou, Evangelos K
Williams, Michelle C
Kotanidis, Christos P
Desai, Milind Y
Marwan, Mohamed
Antonopoulos, Alexios S
Thomas, Katharine E
Thomas, Sheena
Akoumianakis, Ioannis
Fan, Lampson M
Kesavan, Sujatha
Herdman, Laura
Alashi, Alaa
Centeno, Erika Hutt
Lyasheva, Maria
Griffin, Brian P
Flamm, Scott D
Shirodaria, Cheerag
Sabharwal, Nikant
Kelion, Andrew
Dweck, Marc R
Van Beek, Edwin J R
Deanfield, John
Hopewell, Jemma C
Neubauer, Stefan
Channon, Keith M
Achenbach, Stephan
Newby, David E
Antoniades, Charalambos
author_sort Oikonomou, Evangelos K
collection PubMed
description BACKGROUND: Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction. METHODS AND RESULTS: We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62–0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI. CONCLUSION: The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art.
format Online
Article
Text
id pubmed-6855141
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-68551412019-11-18 A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography Oikonomou, Evangelos K Williams, Michelle C Kotanidis, Christos P Desai, Milind Y Marwan, Mohamed Antonopoulos, Alexios S Thomas, Katharine E Thomas, Sheena Akoumianakis, Ioannis Fan, Lampson M Kesavan, Sujatha Herdman, Laura Alashi, Alaa Centeno, Erika Hutt Lyasheva, Maria Griffin, Brian P Flamm, Scott D Shirodaria, Cheerag Sabharwal, Nikant Kelion, Andrew Dweck, Marc R Van Beek, Edwin J R Deanfield, John Hopewell, Jemma C Neubauer, Stefan Channon, Keith M Achenbach, Stephan Newby, David E Antoniades, Charalambos Eur Heart J Fast Track Clinical Research BACKGROUND: Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction. METHODS AND RESULTS: We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62–0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI. CONCLUSION: The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art. Oxford University Press 2019-11-14 2019-09-03 /pmc/articles/PMC6855141/ /pubmed/31504423 http://dx.doi.org/10.1093/eurheartj/ehz592 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Fast Track Clinical Research
Oikonomou, Evangelos K
Williams, Michelle C
Kotanidis, Christos P
Desai, Milind Y
Marwan, Mohamed
Antonopoulos, Alexios S
Thomas, Katharine E
Thomas, Sheena
Akoumianakis, Ioannis
Fan, Lampson M
Kesavan, Sujatha
Herdman, Laura
Alashi, Alaa
Centeno, Erika Hutt
Lyasheva, Maria
Griffin, Brian P
Flamm, Scott D
Shirodaria, Cheerag
Sabharwal, Nikant
Kelion, Andrew
Dweck, Marc R
Van Beek, Edwin J R
Deanfield, John
Hopewell, Jemma C
Neubauer, Stefan
Channon, Keith M
Achenbach, Stephan
Newby, David E
Antoniades, Charalambos
A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
title A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
title_full A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
title_fullStr A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
title_full_unstemmed A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
title_short A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
title_sort novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary ct angiography
topic Fast Track Clinical Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855141/
https://www.ncbi.nlm.nih.gov/pubmed/31504423
http://dx.doi.org/10.1093/eurheartj/ehz592
work_keys_str_mv AT oikonomouevangelosk anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT williamsmichellec anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT kotanidischristosp anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT desaimilindy anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT marwanmohamed anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT antonopoulosalexioss anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT thomaskatharinee anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT thomassheena anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT akoumianakisioannis anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT fanlampsonm anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT kesavansujatha anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT herdmanlaura anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT alashialaa anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT centenoerikahutt anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT lyashevamaria anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT griffinbrianp anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT flammscottd anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT shirodariacheerag anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT sabharwalnikant anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT kelionandrew anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT dweckmarcr anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT vanbeekedwinjr anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT deanfieldjohn anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT hopewelljemmac anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT neubauerstefan anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT channonkeithm anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT achenbachstephan anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT newbydavide anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT antoniadescharalambos anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT oikonomouevangelosk novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT williamsmichellec novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT kotanidischristosp novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT desaimilindy novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT marwanmohamed novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT antonopoulosalexioss novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT thomaskatharinee novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT thomassheena novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT akoumianakisioannis novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT fanlampsonm novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT kesavansujatha novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT herdmanlaura novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT alashialaa novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT centenoerikahutt novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT lyashevamaria novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT griffinbrianp novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT flammscottd novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT shirodariacheerag novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT sabharwalnikant novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT kelionandrew novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT dweckmarcr novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT vanbeekedwinjr novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT deanfieldjohn novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT hopewelljemmac novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT neubauerstefan novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT channonkeithm novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT achenbachstephan novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT newbydavide novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography
AT antoniadescharalambos novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography