Cargando…
A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
BACKGROUND: Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved i...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855141/ https://www.ncbi.nlm.nih.gov/pubmed/31504423 http://dx.doi.org/10.1093/eurheartj/ehz592 |
_version_ | 1783470354380881920 |
---|---|
author | Oikonomou, Evangelos K Williams, Michelle C Kotanidis, Christos P Desai, Milind Y Marwan, Mohamed Antonopoulos, Alexios S Thomas, Katharine E Thomas, Sheena Akoumianakis, Ioannis Fan, Lampson M Kesavan, Sujatha Herdman, Laura Alashi, Alaa Centeno, Erika Hutt Lyasheva, Maria Griffin, Brian P Flamm, Scott D Shirodaria, Cheerag Sabharwal, Nikant Kelion, Andrew Dweck, Marc R Van Beek, Edwin J R Deanfield, John Hopewell, Jemma C Neubauer, Stefan Channon, Keith M Achenbach, Stephan Newby, David E Antoniades, Charalambos |
author_facet | Oikonomou, Evangelos K Williams, Michelle C Kotanidis, Christos P Desai, Milind Y Marwan, Mohamed Antonopoulos, Alexios S Thomas, Katharine E Thomas, Sheena Akoumianakis, Ioannis Fan, Lampson M Kesavan, Sujatha Herdman, Laura Alashi, Alaa Centeno, Erika Hutt Lyasheva, Maria Griffin, Brian P Flamm, Scott D Shirodaria, Cheerag Sabharwal, Nikant Kelion, Andrew Dweck, Marc R Van Beek, Edwin J R Deanfield, John Hopewell, Jemma C Neubauer, Stefan Channon, Keith M Achenbach, Stephan Newby, David E Antoniades, Charalambos |
author_sort | Oikonomou, Evangelos K |
collection | PubMed |
description | BACKGROUND: Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction. METHODS AND RESULTS: We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62–0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI. CONCLUSION: The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art. |
format | Online Article Text |
id | pubmed-6855141 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-68551412019-11-18 A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography Oikonomou, Evangelos K Williams, Michelle C Kotanidis, Christos P Desai, Milind Y Marwan, Mohamed Antonopoulos, Alexios S Thomas, Katharine E Thomas, Sheena Akoumianakis, Ioannis Fan, Lampson M Kesavan, Sujatha Herdman, Laura Alashi, Alaa Centeno, Erika Hutt Lyasheva, Maria Griffin, Brian P Flamm, Scott D Shirodaria, Cheerag Sabharwal, Nikant Kelion, Andrew Dweck, Marc R Van Beek, Edwin J R Deanfield, John Hopewell, Jemma C Neubauer, Stefan Channon, Keith M Achenbach, Stephan Newby, David E Antoniades, Charalambos Eur Heart J Fast Track Clinical Research BACKGROUND: Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction. METHODS AND RESULTS: We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62–0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI. CONCLUSION: The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art. Oxford University Press 2019-11-14 2019-09-03 /pmc/articles/PMC6855141/ /pubmed/31504423 http://dx.doi.org/10.1093/eurheartj/ehz592 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Fast Track Clinical Research Oikonomou, Evangelos K Williams, Michelle C Kotanidis, Christos P Desai, Milind Y Marwan, Mohamed Antonopoulos, Alexios S Thomas, Katharine E Thomas, Sheena Akoumianakis, Ioannis Fan, Lampson M Kesavan, Sujatha Herdman, Laura Alashi, Alaa Centeno, Erika Hutt Lyasheva, Maria Griffin, Brian P Flamm, Scott D Shirodaria, Cheerag Sabharwal, Nikant Kelion, Andrew Dweck, Marc R Van Beek, Edwin J R Deanfield, John Hopewell, Jemma C Neubauer, Stefan Channon, Keith M Achenbach, Stephan Newby, David E Antoniades, Charalambos A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography |
title | A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography |
title_full | A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography |
title_fullStr | A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography |
title_full_unstemmed | A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography |
title_short | A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography |
title_sort | novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary ct angiography |
topic | Fast Track Clinical Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855141/ https://www.ncbi.nlm.nih.gov/pubmed/31504423 http://dx.doi.org/10.1093/eurheartj/ehz592 |
work_keys_str_mv | AT oikonomouevangelosk anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT williamsmichellec anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT kotanidischristosp anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT desaimilindy anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT marwanmohamed anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT antonopoulosalexioss anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT thomaskatharinee anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT thomassheena anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT akoumianakisioannis anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT fanlampsonm anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT kesavansujatha anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT herdmanlaura anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT alashialaa anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT centenoerikahutt anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT lyashevamaria anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT griffinbrianp anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT flammscottd anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT shirodariacheerag anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT sabharwalnikant anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT kelionandrew anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT dweckmarcr anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT vanbeekedwinjr anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT deanfieldjohn anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT hopewelljemmac anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT neubauerstefan anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT channonkeithm anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT achenbachstephan anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT newbydavide anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT antoniadescharalambos anovelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT oikonomouevangelosk novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT williamsmichellec novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT kotanidischristosp novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT desaimilindy novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT marwanmohamed novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT antonopoulosalexioss novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT thomaskatharinee novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT thomassheena novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT akoumianakisioannis novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT fanlampsonm novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT kesavansujatha novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT herdmanlaura novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT alashialaa novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT centenoerikahutt novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT lyashevamaria novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT griffinbrianp novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT flammscottd novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT shirodariacheerag novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT sabharwalnikant novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT kelionandrew novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT dweckmarcr novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT vanbeekedwinjr novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT deanfieldjohn novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT hopewelljemmac novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT neubauerstefan novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT channonkeithm novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT achenbachstephan novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT newbydavide novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography AT antoniadescharalambos novelmachinelearningderivedradiotranscriptomicsignatureofperivascularfatimprovescardiacriskpredictionusingcoronaryctangiography |