Cargando…

Far-red/near-infrared emitting, two-photon absorbing, and bio-stable amino-Si-pyronin dyes

Organic fluorophores emitting in the far-red/near-infrared (NIR) wavelength region are in great demand for minimal autofluorescence and reduced light scattering in deep tissue or whole body imaging. Currently, only a few classes of far-red/NIR fluorophores are available including widely used cyanine...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Kyeong Hwan, Singha, Subhankar, Jun, Yong Woong, Reo, Ye Jin, Kim, Hye Rim, Ryu, Hye Gun, Bhunia, Snehasis, Ahn, Kyo Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855311/
https://www.ncbi.nlm.nih.gov/pubmed/31762981
http://dx.doi.org/10.1039/c9sc02287b
Descripción
Sumario:Organic fluorophores emitting in the far-red/near-infrared (NIR) wavelength region are in great demand for minimal autofluorescence and reduced light scattering in deep tissue or whole body imaging. Currently, only a few classes of far-red/NIR fluorophores are available including widely used cyanine dyes, which are susceptible to photobleaching and form nonfluorescent aggregates. Even rare are those far-red/NIR emitting dyes that have two-photon imaging capability. Here we report a new class of far-red/NIR-emitting dyes that are photo-stable, very bright, biocompatible, and also two-photon absorbing. The introduction of an electron-withdrawing group such as N-acyl or N-alkoxycarbonyl groups on the C-10-amino substituent of the new julolidine-derived amino-Si-pyronin dyes (ASiP(j)), which emit in the far-red region, causes large bathochromic shifts, leading to NIR-emitting amino-Si-pyronin dyes (NIR-ASiP(j)) having high cellular stability. Furthermore, the ASiP(j)–NIR-ASiP(j) couple offers a novel ratiometric bioimaging platform with a large spectral gap, as demonstrated here with a boronate-containing NIR-ASiP(j) derivative that is converted to the corresponding ASiP(j) dye upon reaction with hydrogen peroxide.