Cargando…
N-Acetylcysteine Ameliorates Gentamicin-Induced Nephrotoxicity by Enhancing Autophagy and Reducing Oxidative Damage in Miniature Pigs
The clinical use of gentamicin over prolonged periods is limited because of dose and time-dependent nephrotoxicity, in which intracellular oxidative stress and heightened inflammation have been implicated. Macroautophagy/autophagy is an essential and highly conserved self-digestion pathway that play...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855429/ https://www.ncbi.nlm.nih.gov/pubmed/30676497 http://dx.doi.org/10.1097/SHK.0000000000001319 |
_version_ | 1783470391997497344 |
---|---|
author | Cui, Jing Tang, Li Hong, Quan Lin, Shupeng Sun, Xuefeng Cai, Guangyan Bai, Xue-Yuan Chen, Xiangmei |
author_facet | Cui, Jing Tang, Li Hong, Quan Lin, Shupeng Sun, Xuefeng Cai, Guangyan Bai, Xue-Yuan Chen, Xiangmei |
author_sort | Cui, Jing |
collection | PubMed |
description | The clinical use of gentamicin over prolonged periods is limited because of dose and time-dependent nephrotoxicity, in which intracellular oxidative stress and heightened inflammation have been implicated. Macroautophagy/autophagy is an essential and highly conserved self-digestion pathway that plays important roles in the maintenance of cellular function and viability under stress. The aim of this study was to determine changes in autophagy in response to the antioxidant N-acetylcysteine (NAC), via its effects on oxidative stress, inflammation, apoptosis, and renal function, following treatment with gentamicin in mini pigs. Adult mini pigs were divided into isotonic saline solution, gentamicin, and gentamicin plus NAC combination treatment groups. Gentamicin-induced histopathological changes, including inflammatory cell infiltration and tubular necrosis, were attenuated by NAC. NAC ameliorated the gentamicin-induced decreases in the levels of autophagy-related proteins, such as LC3 (microtubule-associated protein 1 light chain 3), PINK1 (phosphatase and tensin homologue deleted on chromosome10-induced kinase 1), phospho-parkin, AMBRA1 (activatingmolecule in Beclin 1-regulated autophagy), p62/SQSTM1 (sequestosome protein 1), and polyubiquitinated protein aggregates. NAC also caused a significant reduction in oxidative damage markers, including 4-hydroxy-2-nonenal, protein carbonyls, γ-H2AX (gamma histone variant H2AX), and 8-hydroxy-2′-deoxyguanosine, in gentamicin-treated animals. These data show that the protective effects of NAC might be related, at least in part, to a reduced inflammatory response, as observed in animals treated with both gentamicin and NAC. These results suggest that autophagy could be a new therapeutic target for preventing gentamicin-induced kidney injury, and that NAC might ameliorate gentamicin-induced nephrotoxicity by autophagy. |
format | Online Article Text |
id | pubmed-6855429 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-68554292019-12-30 N-Acetylcysteine Ameliorates Gentamicin-Induced Nephrotoxicity by Enhancing Autophagy and Reducing Oxidative Damage in Miniature Pigs Cui, Jing Tang, Li Hong, Quan Lin, Shupeng Sun, Xuefeng Cai, Guangyan Bai, Xue-Yuan Chen, Xiangmei Shock Basic Science Aspects The clinical use of gentamicin over prolonged periods is limited because of dose and time-dependent nephrotoxicity, in which intracellular oxidative stress and heightened inflammation have been implicated. Macroautophagy/autophagy is an essential and highly conserved self-digestion pathway that plays important roles in the maintenance of cellular function and viability under stress. The aim of this study was to determine changes in autophagy in response to the antioxidant N-acetylcysteine (NAC), via its effects on oxidative stress, inflammation, apoptosis, and renal function, following treatment with gentamicin in mini pigs. Adult mini pigs were divided into isotonic saline solution, gentamicin, and gentamicin plus NAC combination treatment groups. Gentamicin-induced histopathological changes, including inflammatory cell infiltration and tubular necrosis, were attenuated by NAC. NAC ameliorated the gentamicin-induced decreases in the levels of autophagy-related proteins, such as LC3 (microtubule-associated protein 1 light chain 3), PINK1 (phosphatase and tensin homologue deleted on chromosome10-induced kinase 1), phospho-parkin, AMBRA1 (activatingmolecule in Beclin 1-regulated autophagy), p62/SQSTM1 (sequestosome protein 1), and polyubiquitinated protein aggregates. NAC also caused a significant reduction in oxidative damage markers, including 4-hydroxy-2-nonenal, protein carbonyls, γ-H2AX (gamma histone variant H2AX), and 8-hydroxy-2′-deoxyguanosine, in gentamicin-treated animals. These data show that the protective effects of NAC might be related, at least in part, to a reduced inflammatory response, as observed in animals treated with both gentamicin and NAC. These results suggest that autophagy could be a new therapeutic target for preventing gentamicin-induced kidney injury, and that NAC might ameliorate gentamicin-induced nephrotoxicity by autophagy. Lippincott Williams & Wilkins 2019-12 2019-11-13 /pmc/articles/PMC6855429/ /pubmed/30676497 http://dx.doi.org/10.1097/SHK.0000000000001319 Text en Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society. http://creativecommons.org/licenses/by-nc-nd/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0 |
spellingShingle | Basic Science Aspects Cui, Jing Tang, Li Hong, Quan Lin, Shupeng Sun, Xuefeng Cai, Guangyan Bai, Xue-Yuan Chen, Xiangmei N-Acetylcysteine Ameliorates Gentamicin-Induced Nephrotoxicity by Enhancing Autophagy and Reducing Oxidative Damage in Miniature Pigs |
title | N-Acetylcysteine Ameliorates Gentamicin-Induced Nephrotoxicity by Enhancing Autophagy and Reducing Oxidative Damage in Miniature Pigs |
title_full | N-Acetylcysteine Ameliorates Gentamicin-Induced Nephrotoxicity by Enhancing Autophagy and Reducing Oxidative Damage in Miniature Pigs |
title_fullStr | N-Acetylcysteine Ameliorates Gentamicin-Induced Nephrotoxicity by Enhancing Autophagy and Reducing Oxidative Damage in Miniature Pigs |
title_full_unstemmed | N-Acetylcysteine Ameliorates Gentamicin-Induced Nephrotoxicity by Enhancing Autophagy and Reducing Oxidative Damage in Miniature Pigs |
title_short | N-Acetylcysteine Ameliorates Gentamicin-Induced Nephrotoxicity by Enhancing Autophagy and Reducing Oxidative Damage in Miniature Pigs |
title_sort | n-acetylcysteine ameliorates gentamicin-induced nephrotoxicity by enhancing autophagy and reducing oxidative damage in miniature pigs |
topic | Basic Science Aspects |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855429/ https://www.ncbi.nlm.nih.gov/pubmed/30676497 http://dx.doi.org/10.1097/SHK.0000000000001319 |
work_keys_str_mv | AT cuijing nacetylcysteineamelioratesgentamicininducednephrotoxicitybyenhancingautophagyandreducingoxidativedamageinminiaturepigs AT tangli nacetylcysteineamelioratesgentamicininducednephrotoxicitybyenhancingautophagyandreducingoxidativedamageinminiaturepigs AT hongquan nacetylcysteineamelioratesgentamicininducednephrotoxicitybyenhancingautophagyandreducingoxidativedamageinminiaturepigs AT linshupeng nacetylcysteineamelioratesgentamicininducednephrotoxicitybyenhancingautophagyandreducingoxidativedamageinminiaturepigs AT sunxuefeng nacetylcysteineamelioratesgentamicininducednephrotoxicitybyenhancingautophagyandreducingoxidativedamageinminiaturepigs AT caiguangyan nacetylcysteineamelioratesgentamicininducednephrotoxicitybyenhancingautophagyandreducingoxidativedamageinminiaturepigs AT baixueyuan nacetylcysteineamelioratesgentamicininducednephrotoxicitybyenhancingautophagyandreducingoxidativedamageinminiaturepigs AT chenxiangmei nacetylcysteineamelioratesgentamicininducednephrotoxicitybyenhancingautophagyandreducingoxidativedamageinminiaturepigs |