Cargando…

Evaluating the higher-order structure of the Profile of Emotional Competence (PEC): Confirmatory factor analysis and Bayesian structural equation modeling

Emotional competence (EC) reflects individual differences in the identification, comprehension, expression, regulation, and utilization of one’s own and others’ emotions. EC can be operationalized using the Profile of Emotional Competence (PEC). This scale measures each of the five core emotional co...

Descripción completa

Detalles Bibliográficos
Autores principales: Nozaki, Yuki, Puente-Martínez, Alicia, Mikolajczak, Moïra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855477/
https://www.ncbi.nlm.nih.gov/pubmed/31725760
http://dx.doi.org/10.1371/journal.pone.0225070
Descripción
Sumario:Emotional competence (EC) reflects individual differences in the identification, comprehension, expression, regulation, and utilization of one’s own and others’ emotions. EC can be operationalized using the Profile of Emotional Competence (PEC). This scale measures each of the five core emotional competences (identification, comprehension, expression, regulation, and utilization), separately for one’s own and others’ emotions. However, the higher-order structure of the PEC has not yet been systematically examined. This study aimed to fill this gap using four different samples (French-speaking Belgian, Dutch-speaking Belgian, Spanish, and Japanese). Confirmatory factor analyses and Bayesian structural equation modeling revealed that a structure with two second-order factors (intrapersonal and interpersonal EC) and with residual correlations among the types of competence (identification, comprehension, expression, regulation, and utilization) fitted the data better than alternative models. The findings emphasize the importance of distinguishing between intrapersonal and interpersonal domains in EC, offer a better framework for differentiating among individuals with different EC profiles, and provide exciting perspectives for future research.