Cargando…
A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification
INTRODUCTION: Metabolomics is increasingly being used in the clinical setting for disease diagnosis, prognosis and risk prediction. Machine learning algorithms are particularly important in the construction of multivariate metabolite prediction. Historically, partial least squares (PLS) regression h...
Autores principales: | Mendez, Kevin M., Reinke, Stacey N., Broadhurst, David I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856029/ https://www.ncbi.nlm.nih.gov/pubmed/31728648 http://dx.doi.org/10.1007/s11306-019-1612-4 |
Ejemplares similares
-
Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing
por: Mendez, Kevin M., et al.
Publicado: (2019) -
Moving metabolomics from a data-driven science to an integrative systems science
por: Reinke, Stacey N, et al.
Publicado: (2012) -
Likelihood contrasts: a machine learning algorithm for binary classification of longitudinal data
por: Klén, Riku, et al.
Publicado: (2020) -
Migrating from partial least squares discriminant analysis to artificial neural networks: a comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks
por: Mendez, Kevin M., et al.
Publicado: (2020) -
Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification
por: Bifarin, Olatomiwa O.
Publicado: (2023)