Cargando…
Electrostatic-field and surface-shape similarity for virtual screening and pose prediction
We introduce a new method for rapid computation of 3D molecular similarity that combines electrostatic field comparison with comparison of molecular surface-shape and directional hydrogen-bonding preferences (called “eSim”). Rather than employing heuristic “colors” or user-defined molecular feature...
Autores principales: | Cleves, Ann E., Johnson, Stephen R., Jain, Ajay N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856045/ https://www.ncbi.nlm.nih.gov/pubmed/31650386 http://dx.doi.org/10.1007/s10822-019-00236-6 |
Ejemplares similares
-
Quantitative surface field analysis: learning causal models to predict ligand binding affinity and pose
por: Cleves, Ann E., et al.
Publicado: (2018) -
eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape
por: Kinoshita, Kengo, et al.
Publicado: (2007) -
Extrapolative prediction using physically-based QSAR
por: Cleves, Ann E., et al.
Publicado: (2016) -
Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock
por: Cleves, Ann E., et al.
Publicado: (2015) -
On the Value of Using 3D Shape and Electrostatic Similarities
in Deep Generative Methods
por: Bolcato, Giovanni, et al.
Publicado: (2022)