Cargando…

Relating categorization to set summary statistics perception

Two cognitive processes have been explored that compensate for the limited information that can be perceived and remembered at any given moment. The first parsimonious cognitive process is object categorization. We naturally relate objects to their category, assume they share relevant category prope...

Descripción completa

Detalles Bibliográficos
Autores principales: Khayat, Noam, Hochstein, Shaul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856046/
https://www.ncbi.nlm.nih.gov/pubmed/31243687
http://dx.doi.org/10.3758/s13414-019-01792-7
Descripción
Sumario:Two cognitive processes have been explored that compensate for the limited information that can be perceived and remembered at any given moment. The first parsimonious cognitive process is object categorization. We naturally relate objects to their category, assume they share relevant category properties, often disregarding irrelevant characteristics. Another scene organizing mechanism is representing aspects of the visual world in terms of summary statistics. Spreading attention over a group of objects with some similarity, one perceives an ensemble representation of the group. Without encoding detailed information of individuals, observers process summary data concerning the group, including set mean for various features (from circle size to face expression). Just as categorization may include/depend on prototype and intercategory boundaries, so set perception includes property mean and range. We now explore common features of these processes. We previously investigated summary perception of low-level features with a rapid serial visual presentation (RSVP) paradigm and found that participants perceive both the mean and range extremes of stimulus sets, automatically, implicitly, and on-the-fly, for each RSVP sequence, independently. We now use the same experimental paradigm to test category representation of high-level objects. We find participants perceive categorical characteristics better than they code individual elements. We relate category prototype to set mean and same/different category to in/out-of-range elements, defining a direct parallel between low-level set perception and high-level categorization. The implicit effects of mean or prototype and set or category boundaries are very similar. We suggest that object categorization may share perceptual-computational mechanisms with set summary statistics perception.