Cargando…

Bio-Inspired Evolutionary Model of Spiking Neural Networks in Ionic Liquid Space

One of the biggest struggles while working with artificial neural networks is being able to come up with models which closely match biological observations. Biological neural networks seem to capable of creating and pruning dendritic spines, leading to synapses being changed, which results in higher...

Descripción completa

Detalles Bibliográficos
Autores principales: Iranmehr, Ensieh, Shouraki, Saeed Bagheri, Faraji, Mohammad Mahdi, Bagheri, Nasim, Linares-Barranco, Bernabe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856051/
https://www.ncbi.nlm.nih.gov/pubmed/31787863
http://dx.doi.org/10.3389/fnins.2019.01085
Descripción
Sumario:One of the biggest struggles while working with artificial neural networks is being able to come up with models which closely match biological observations. Biological neural networks seem to capable of creating and pruning dendritic spines, leading to synapses being changed, which results in higher learning capability. The latter forms the basis of the present study in which a new ionic model for reservoir-like networks, consisting of spiking neurons, is introduced. High plasticity of this model makes learning possible with a fewer number of neurons. In order to study the effect of the applied stimulus in an ionic liquid space through time, a diffusion operator is used which somehow compensates for the separation between spatial and temporal coding in spiking neural networks and therefore, makes the mentioned model suitable for spatiotemporal patterns. Inspired by partial structural changes in the human brain over the years, the proposed model evolves during the learning process. The effect of topological evolution on the proposed model's performance for some classification problems is studied in this paper. Several datasets have been used to evaluate the performance of the proposed model compared to the original LSM. Classification results via separation and accuracy values have shown that the proposed ionic liquid outperforms the original LSM.