Cargando…

Multi-atlas label fusion with random local binary pattern features: Application to hippocampus segmentation

Automatic and reliable segmentation of the hippocampus from magnetic resonance (MR) brain images is extremely important in a variety of neuroimage studies. To improve the hippocampus segmentation performance, a local binary pattern based feature extraction method is developed for machine learning ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Hancan, Tang, Zhenyu, Cheng, Hewei, Wu, Yihong, Fan, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856174/
https://www.ncbi.nlm.nih.gov/pubmed/31727982
http://dx.doi.org/10.1038/s41598-019-53387-9
Descripción
Sumario:Automatic and reliable segmentation of the hippocampus from magnetic resonance (MR) brain images is extremely important in a variety of neuroimage studies. To improve the hippocampus segmentation performance, a local binary pattern based feature extraction method is developed for machine learning based multi-atlas hippocampus segmentation. Under the framework of multi-atlas image segmentation (MAIS), a set of selected atlases are registered to images to be segmented using a non-linear image registration algorithm. The registered atlases are then used as training data to build linear regression models for segmenting the images based on the image features, referred to as random local binary pattern (RLBP), extracted using a novel image feature extraction method. The RLBP based MAIS algorithm has been validated for segmenting hippocampus based on a data set of 135 T1 MR images which are from the Alzheimer’s Disease Neuroimaging Initiative database (adni.loni.usc.edu). By using manual segmentation labels produced by experienced tracers as the standard of truth, six segmentation evaluation metrics were used to evaluate the image segmentation results by comparing automatic segmentation results with the manual segmentation labels. We further computed Cohen’s d effect size to investigate the sensitivity of each segmenting method in detecting volumetric differences of the hippocampus between different groups of subjects. The evaluation results showed that our method was competitive to state-of-the-art label fusion methods in terms of accuracy. Hippocampal volumetric analysis showed that the proposed RLBP method performed well in detecting the volumetric differences of the hippocampus between groups of Alzheimer’s disease patients, mild cognitive impairment subjects, and normal controls. These results have demonstrated that the RLBP based multi-atlas image segmentation method could facilitate efficient and accurate extraction of the hippocampus and may help predict Alzheimer’s disease. The codes of the proposed method is available (https://www.nitrc.org/frs/?group_id=1242).