Cargando…
Multi-atlas label fusion with random local binary pattern features: Application to hippocampus segmentation
Automatic and reliable segmentation of the hippocampus from magnetic resonance (MR) brain images is extremely important in a variety of neuroimage studies. To improve the hippocampus segmentation performance, a local binary pattern based feature extraction method is developed for machine learning ba...
Autores principales: | Zhu, Hancan, Tang, Zhenyu, Cheng, Hewei, Wu, Yihong, Fan, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856174/ https://www.ncbi.nlm.nih.gov/pubmed/31727982 http://dx.doi.org/10.1038/s41598-019-53387-9 |
Ejemplares similares
-
Deep fusion of multi-modal features for brain tumor image segmentation
por: Zhang, Guying, et al.
Publicado: (2023) -
Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation
por: Zheng, Qiang, et al.
Publicado: (2018) -
Functional parcellation of the hippocampus by semi-supervised clustering of resting state fMRI data
por: Cheng, Hewei, et al.
Publicado: (2020) -
Multi-Scale Feature Fusion for Coal-Rock Recognition Based on Completed Local Binary Pattern and Convolution Neural Network
por: Liu, Xiaoyang, et al.
Publicado: (2019) -
Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation
por: Zhu, Hancan, et al.
Publicado: (2019)