Cargando…
Greedy low-rank algorithm for spatial connectome regression
Recovering brain connectivity from tract tracing data is an important computational problem in the neurosciences. Mesoscopic connectome reconstruction was previously formulated as a structured matrix regression problem (Harris et al. in Neural Information Processing Systems, 2016), but existing tech...
Autores principales: | Kürschner, Patrick, Dolgov, Sergey, Harris, Kameron Decker, Benner, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856255/ https://www.ncbi.nlm.nih.gov/pubmed/31728676 http://dx.doi.org/10.1186/s13408-019-0077-0 |
Ejemplares similares
-
RADI: a low-rank ADI-type algorithm for large scale algebraic Riccati equations
por: Benner, Peter, et al.
Publicado: (2017) -
Beware greedy algorithms
por: Simmons, Benno I., et al.
Publicado: (2019) -
A greedy regression algorithm with coarse weights offers novel advantages
por: Jeffries, Clark D., et al.
Publicado: (2022) -
Geometrical congruence, greedy navigability and myopic transfer in complex networks and brain connectomes
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2022) -
Sparse Ultrasound Imaging via Manifold Low-Rank Approximation and Non-Convex Greedy Pursuit
por: Rigo Passarin, Thiago Alberto, et al.
Publicado: (2018)