Cargando…
Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides
Polymeric carbon nitride (PCN) is usually synthesized from nitrogen‐rich monomers such as cyanamide, melamine, and urea, but is rather disordered in many cases. Now, a new allotrope of carbon nitride with internal heterostructures was obtained by co‐condensation of very electron poor monomers (for e...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856808/ https://www.ncbi.nlm.nih.gov/pubmed/31424624 http://dx.doi.org/10.1002/anie.201908322 |
Sumario: | Polymeric carbon nitride (PCN) is usually synthesized from nitrogen‐rich monomers such as cyanamide, melamine, and urea, but is rather disordered in many cases. Now, a new allotrope of carbon nitride with internal heterostructures was obtained by co‐condensation of very electron poor monomers (for example, 5‐amino‐tetrazole and nucleobases) in the presence of mild molten salts (for example, NaCl/KCl) to mediate the polymerization kinetics and thus modulate the local structure, charge carrier properties, and most importantly the HOMO and LUMO levels. Results reveal that the as‐prepared NaK‐PHI‐A material shows excellent photo‐redox activities because of a nanometric hetero‐structure which enhances visible light absorption and promotes charge separation in the different domains. |
---|