Cargando…
Avoiding pitfalls when combining multiple imputation and propensity scores
Overcoming bias due to confounding and missing data is challenging when analyzing observational data. Propensity scores are commonly used to account for the first problem and multiple imputation for the latter. Unfortunately, it is not known how best to proceed when both techniques are required. We...
Autores principales: | Granger, Emily, Sergeant, Jamie C., Lunt, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856837/ https://www.ncbi.nlm.nih.gov/pubmed/31512265 http://dx.doi.org/10.1002/sim.8355 |
Ejemplares similares
-
A review of the use of propensity score diagnostics in papers published in high-ranking medical journals
por: Granger, Emily, et al.
Publicado: (2020) -
Propensity score analysis with partially observed covariates: How
should multiple imputation be used?
por: Leyrat, Clémence, et al.
Publicado: (2017) -
Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
por: Sterne, Jonathan A C, et al.
Publicado: (2009) -
Considerations for Using Multiple Imputation in Propensity Score-Weighted Analysis – A Tutorial with Applied Example
por: Eiset, Andreas Halgreen, et al.
Publicado: (2022) -
Multiple imputation of multiple multi-item scales when a full imputation model is infeasible
por: Plumpton, Catrin O., et al.
Publicado: (2016)