Cargando…
Robustness of Radiomics for Survival Prediction of Brain Tumor Patients Depending on Resection Status
Prediction of overall survival based on multimodal MRI of brain tumor patients is a difficult problem. Although survival also depends on factors that cannot be assessed via preoperative MRI such as surgical outcome, encouraging results for MRI-based survival analysis have been published for differen...
Autores principales: | Weninger, Leon, Haarburger, Christoph, Merhof, Dorit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857096/ https://www.ncbi.nlm.nih.gov/pubmed/31780915 http://dx.doi.org/10.3389/fncom.2019.00073 |
Ejemplares similares
-
Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Haarburger, Christoph, et al.
Publicado: (2020) -
Author Correction: Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Haarburger, Christoph, et al.
Publicado: (2021) -
Multiphase CT-based prediction of Child-Pugh classification: a machine learning approach
por: Thüring, Johannes, et al.
Publicado: (2020) -
Analyzing the effects of free water modeling by deep learning on diffusion MRI structural connectivity estimates in glioma patients
por: Weninger, Leon, et al.
Publicado: (2020) -
Reliability as a Precondition for Trust—Segmentation Reliability Analysis of Radiomic Features Improves Survival Prediction
por: Müller-Franzes, Gustav, et al.
Publicado: (2022)