Cargando…
Deep neural networks ensemble for detecting medication mentions in tweets
OBJECTIVE: Twitter posts are now recognized as an important source of patient-generated data, providing unique insights into population health. A fundamental step toward incorporating Twitter data in pharmacoepidemiologic research is to automatically recognize medication mentions in tweets. Given th...
Autores principales: | Weissenbacher, Davy, Sarker, Abeed, Klein, Ari, O’Connor, Karen, Magge, Arjun, Gonzalez-Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857507/ https://www.ncbi.nlm.nih.gov/pubmed/31562510 http://dx.doi.org/10.1093/jamia/ocz156 |
Ejemplares similares
-
Deep neural networks and distant supervision for geographic location mention extraction
por: Magge, Arjun, et al.
Publicado: (2018) -
Active neural networks to detect mentions of changes to medication treatment in social media
por: Weissenbacher, Davy, et al.
Publicado: (2021) -
DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter
por: Magge, Arjun, et al.
Publicado: (2021) -
Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
por: Nikfarjam, Azadeh, et al.
Publicado: (2015) -
GeoBoost2: a natural languageprocessing pipeline for GenBank metadata enrichment for virus phylogeography
por: Magge, Arjun, et al.
Publicado: (2020)