Cargando…
Deep learning for clustering of multivariate clinical patient trajectories with missing values
BACKGROUND: Precision medicine requires a stratification of patients by disease presentation that is sufficiently informative to allow for selecting treatments on a per-patient basis. For many diseases, such as neurological disorders, this stratification problem translates into a complex problem of...
Autores principales: | de Jong, Johann, Emon, Mohammad Asif, Wu, Ping, Karki, Reagon, Sood, Meemansa, Godard, Patrice, Ahmad, Ashar, Vrooman, Henri, Hofmann-Apitius, Martin, Fröhlich, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857688/ https://www.ncbi.nlm.nih.gov/pubmed/31730697 http://dx.doi.org/10.1093/gigascience/giz134 |
Ejemplares similares
-
Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders
por: Sood, Meemansa, et al.
Publicado: (2020) -
Clustering of Alzheimer’s and Parkinson’s disease based on genetic burden of shared molecular mechanisms
por: Emon, Mohammad Asif, et al.
Publicado: (2020) -
Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia - lessons for translation into clinical practice
por: Birkenbihl, Colin, et al.
Publicado: (2020) -
Using Drugs as Molecular Probes: A Computational Chemical Biology Approach in Neurodegenerative Diseases
por: Emon, Mohammad Asif Emran Khan, et al.
Publicado: (2017) -
Variational Autoencoder Modular Bayesian Networks for Simulation of Heterogeneous Clinical Study Data
por: Gootjes-Dreesbach, Luise, et al.
Publicado: (2020)