Cargando…
N-terminal sequences in Matrin 3 mediate phase separation into droplet-like structures that recruit TDP43 variants lacking RNA binding elements
RNA binding proteins associated with amyotrophic lateral sclerosis (ALS) and muscle myopathy possess sequence elements that are low in complexity, or bear resemblance to yeast prion domains. These sequence elements appear to mediate phase separation into liquid-like membraneless organelles. Using fu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857798/ https://www.ncbi.nlm.nih.gov/pubmed/31019288 http://dx.doi.org/10.1038/s41374-019-0260-7 |
Sumario: | RNA binding proteins associated with amyotrophic lateral sclerosis (ALS) and muscle myopathy possess sequence elements that are low in complexity, or bear resemblance to yeast prion domains. These sequence elements appear to mediate phase separation into liquid-like membraneless organelles. Using fusion proteins of MATR3 to yellow fluorescent protein (YFP), we recently observed that deletion of the second RNA recognition motif (RRM2) caused the protein to phase separate and form intranuclear liquid-like droplets. Here, we use fusion constructs of MATR3, TARDBP43 (TDP43) and FUS with YFP or mCherry to examine phase-separation and protein co-localization in mouse C2C12 myoblast cells. We observed that the N-terminal 397 amino acids of MATR3 (tagged with a nuclear localization signal and expressed as a fusion protein with YFP) formed droplet-like structures within nuclei. Introduction of the myopathic S85C mutation into NLS-N397 MATR3:YFP, but not ALS mutations F115C or P154S, inhibited droplet formation. Further, we analyzed interactions between variants of MATR3 lacking RRM2 (ΔRRM2) and variants of TDP43 with disabling mutations in its RRM1 domain (deletion or mutation). We observed that MATR3:YFP ΔRRM2 formed droplets that appeared to recruit the TDP43 RRM1 mutants. Further, co-expression of the NLS-397 MATR3:YFP construct with a construct that encodes the prion-like domain of TDBP43 produced intranuclear droplet-like structures containing both proteins. Collectively, our studies show that N-terminal sequences in MATR3 can mediate phase separation into intranuclear droplet-like structures that can recruit TDP43 under conditions of low RNA binding. |
---|