Cargando…
Gene expression based survival prediction for cancer patients—A topic modeling approach
Cancer is one of the leading cause of death, worldwide. Many believe that genomic data will enable us to better predict the survival time of these patients, which will lead to better, more personalized treatment options and patient care. As standard survival prediction models have a hard time coping...
Autores principales: | Kumar, Luke, Greiner, Russell |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857918/ https://www.ncbi.nlm.nih.gov/pubmed/31730620 http://dx.doi.org/10.1371/journal.pone.0224446 |
Ejemplares similares
-
Learning Individual Survival Models from PanCancer Whole Transcriptome Data
por: Kumar, Neeraj, et al.
Publicado: (2023) -
Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients
por: Kumar, Neeraj, et al.
Publicado: (2022) -
Enhancing the Lasso Approach for Developing a Survival Prediction Model Based on Gene Expression Data
por: Kaneko, Shuhei, et al.
Publicado: (2015) -
Accurate personalized survival prediction for amyotrophic lateral sclerosis patients
por: Kuan, Li-Hao, et al.
Publicado: (2023) -
Predicting Cancer Patient Survival with Gene Expression Data
Publicado: (2004)