Cargando…
Exploring the limitations of biophysical propensity scales coupled with machine learning for protein sequence analysis
Machine learning (ML) is ubiquitous in bioinformatics, due to its versatility. One of the most crucial aspects to consider while training a ML model is to carefully select the optimal feature encoding for the problem at hand. Biophysical propensity scales are widely adopted in structural bioinformat...
Autores principales: | Raimondi, Daniele, Orlando, Gabriele, Vranken, Wim F., Moreau, Yves |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858301/ https://www.ncbi.nlm.nih.gov/pubmed/31729443 http://dx.doi.org/10.1038/s41598-019-53324-w |
Ejemplares similares
-
Auto-encoding NMR chemical shifts from their native vector space to a residue-level biophysical index
por: Orlando, Gabriele, et al.
Publicado: (2019) -
ShiftCrypt: a web server to understand and biophysically align proteins through their NMR chemical shift values
por: Orlando, Gabriele, et al.
Publicado: (2020) -
Exploring the Sequence-based Prediction of Folding Initiation Sites in Proteins
por: Raimondi, Daniele, et al.
Publicado: (2017) -
Author Correction: Exploring the Sequence-based Prediction of Folding Initiation Sites in Proteins
por: Raimondi, Daniele, et al.
Publicado: (2019) -
Large-scale in-silico statistical mutagenesis analysis sheds light on the deleteriousness landscape of the human proteome
por: Raimondi, Daniele, et al.
Publicado: (2018)