Cargando…
CPEM: Accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network
With recent advances in DNA sequencing technologies, fast acquisition of large-scale genomic data has become commonplace. For cancer studies, in particular, there is an increasing need for the classification of cancer type based on somatic alterations detected from sequencing analyses. However, the...
Autores principales: | Lee, Kanggeun, Jeong, Hyoung-oh, Lee, Semin, Jeong, Won-Ki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858312/ https://www.ncbi.nlm.nih.gov/pubmed/31729414 http://dx.doi.org/10.1038/s41598-019-53034-3 |
Ejemplares similares
-
1986 Conference on Precision Electromagnetic Measurements : CPEM-86
Publicado: (1986) -
Noise2Kernel: Adaptive Self-Supervised Blind Denoising Using a Dilated Convolutional Kernel Architecture
por: Lee, Kanggeun, et al.
Publicado: (2022) -
An ensemble approach to accurately detect somatic mutations using SomaticSeq
por: Fang, Li Tai, et al.
Publicado: (2015) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sahraeian, Sayed Mohammad Ebrahim, et al.
Publicado: (2019) -
Ensemble multimodal deep learning for early diagnosis and accurate classification of COVID-19()
por: Kumar, Santosh, et al.
Publicado: (2022)