Cargando…

Non-Hermitian fractional quantum Hall states

We demonstrate the emergence of a topological ordered phase for non-Hermitian systems. Specifically, we elucidate that systems with non-Hermitian two-body interactions show a fractional quantum Hall (FQH) state. The non-Hermitian Hamiltonian is considered to be relevant to cold atoms with dissipatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoshida, Tsuneya, Kudo, Koji, Hatsugai, Yasuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858315/
https://www.ncbi.nlm.nih.gov/pubmed/31729412
http://dx.doi.org/10.1038/s41598-019-53253-8
Descripción
Sumario:We demonstrate the emergence of a topological ordered phase for non-Hermitian systems. Specifically, we elucidate that systems with non-Hermitian two-body interactions show a fractional quantum Hall (FQH) state. The non-Hermitian Hamiltonian is considered to be relevant to cold atoms with dissipation. We conclude the emergence of the non-Hermitian FQH state by the presence of the topological degeneracy and by the many-body Chern number for the ground state multiplet showing C(tot) = 1. The robust topological degeneracy against non-Hermiticity arises from the manybody translational symmetry. Furthermore, we discover that the FQH state emerges without any repulsive interactions, which is attributed to a phenomenon reminiscent of the continuous quantum Zeno effect.