Cargando…
Effects of global change factors and living roots on root litter decomposition in a Qinghai-Tibet alpine meadow
Roots account for a major part of plant biomass in Tibetan alpine meadows. Understanding root decomposition with global change is key to predict carbon (C) and nutrient dynamics on the Qinghai-Tibet Plateau. Yet, few experiments have carefully examined root decomposition as influenced by global chan...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858338/ https://www.ncbi.nlm.nih.gov/pubmed/31729455 http://dx.doi.org/10.1038/s41598-019-53450-5 |
Sumario: | Roots account for a major part of plant biomass in Tibetan alpine meadows. Understanding root decomposition with global change is key to predict carbon (C) and nutrient dynamics on the Qinghai-Tibet Plateau. Yet, few experiments have carefully examined root decomposition as influenced by global change. We conducted a field study to investigate the effects of nitrogen (N) addition, air warming, precipitation change, and the presence/absence of living roots on root decomposition in a Tibetan alpine meadow. Our results showed that N addition increased the mass and C remaining, and induced N accumulation in the litter. Increased precipitation significantly amplified the positive effect of N addition on litter mass remaining. The presence of alive roots in the litterbags decreased root litter C remaining but significantly increased N and phosphorus remaining of the litter. However, we did not find any significant effects of air warming on the litter decomposition. In the Qinghai-Tibet Plateau, N deposition is predicted to increase and precipitation regime is predicted to change. Our results suggest that the interaction between increased N and precipitation may reduce root decomposition in the Qinghai-Tibet Plateau in the future, and that the large stock of living roots exert a dominant impact on nutrient dynamics of root decomposition in the Tibetan alpine systems. |
---|