Cargando…
Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis
The emergence of large-scale multi-omics data warrants method development for data integration. Genomic studies from cancer patients have identified epigenetic and genetic regulators – such as methylation marks, somatic mutations, and somatic copy number alterations (SCNAs), among others – as predic...
Autores principales: | Li, Amy, Chapuy, Bjoern, Varelas, Xaralabos, Sebastiani, Paola, Monti, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858347/ https://www.ncbi.nlm.nih.gov/pubmed/31729402 http://dx.doi.org/10.1038/s41598-019-52886-z |
Ejemplares similares
-
CaDrA: A Computational Framework for Performing Candidate Driver Analyses Using Genomic Features
por: Kartha, Vinay K., et al.
Publicado: (2019) -
Structure learning for gene regulatory networks
por: Federico, Anthony, et al.
Publicado: (2023) -
Altered RNA editing in 3′ UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors
por: Zhang, Liye, et al.
Publicado: (2016) -
In search of epi-driver genes in head and neck cancer
por: Bhattacharjya, Sumana, et al.
Publicado: (2014) -
Yap suppresses T-cell function and infiltration in the tumor microenvironment
por: Stampouloglou, Eleni, et al.
Publicado: (2020)