Cargando…
A Bayesian mixture model for the analysis of allelic expression in single cells
Allele-specific expression (ASE) at single-cell resolution is a critical tool for understanding the stochastic and dynamic features of gene expression. However, low read coverage and high biological variability present challenges for analyzing ASE. We demonstrate that discarding multi-mapping reads...
Autores principales: | Choi, Kwangbom, Raghupathy, Narayanan, Churchill, Gary A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858378/ https://www.ncbi.nlm.nih.gov/pubmed/31729374 http://dx.doi.org/10.1038/s41467-019-13099-0 |
Ejemplares similares
-
Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics
por: Choi, Kwangbom, et al.
Publicado: (2020) -
Publisher Correction: Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics
por: Choi, Kwangbom, et al.
Publicado: (2020) -
Airpart: interpretable statistical models for analyzing allelic imbalance in single-cell datasets
por: Mu, Wancen, et al.
Publicado: (2022) -
SEESAW: detecting isoform-level allelic imbalance accounting for inferential uncertainty
por: Wu, Euphy Y., et al.
Publicado: (2023) -
Bayesian Mixture Model Analysis for Detecting Differentially Expressed Genes
por: Jia, Zhenyu, et al.
Publicado: (2008)