Cargando…
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
Machine learning advances chemistry and materials science by enabling large-scale exploration of chemical space based on quantum chemical calculations. While these models supply fast and accurate predictions of atomistic chemical properties, they do not explicitly capture the electronic degrees of f...
Autores principales: | Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller, K.-R., Maurer, R. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858523/ https://www.ncbi.nlm.nih.gov/pubmed/31729373 http://dx.doi.org/10.1038/s41467-019-12875-2 |
Ejemplares similares
-
Machine learning of solvent effects on molecular spectra and reactions
por: Gastegger, Michael, et al.
Publicado: (2021) -
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
Combining Machine Learning and Computational Chemistry
for Predictive Insights Into Chemical Systems
por: Keith, John A., et al.
Publicado: (2021) -
Quantum-chemical insights from deep tensor neural networks
por: Schütt, Kristof T., et al.
Publicado: (2017) -
Machine learning meets quantum physics
por: Schütt, Kristof, et al.
Publicado: (2020)