Cargando…
Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs
Cryo-electron microscopy is a popular method for protein structure determination. Identifying a sufficient number of particles for analysis can take months of manual effort. Current computational approaches find many false positives and require significant ad hoc post-processing, especially for unus...
Autores principales: | Bepler, Tristan, Morin, Andrew, Rapp, Micah, Brasch, Julia, Shapiro, Lawrence, Noble, Alex J., Berger, Bonnie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858545/ https://www.ncbi.nlm.nih.gov/pubmed/31591578 http://dx.doi.org/10.1038/s41592-019-0575-8 |
Ejemplares similares
-
CryoTransformer: A Transformer Model for Picking Protein Particles from Cryo-EM Micrographs
por: Dhakal, Ashwin, et al.
Publicado: (2023) -
DRPnet: automated particle picking in cryo-electron micrographs using deep regression
por: Nguyen, Nguyen Phuoc, et al.
Publicado: (2021) -
Topaz-Denoise: general deep denoising models for cryoEM and cryoET
por: Bepler, Tristan, et al.
Publicado: (2020) -
CryoDRGN: Reconstruction of heterogeneous cryo-EM structures using neural networks
por: Zhong, Ellen D., et al.
Publicado: (2021) -
Learning to automate cryo-electron microscopy data collection with Ptolemy
por: Kim, Paul T., et al.
Publicado: (2023)