Cargando…
Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra
Non-uniform and sparse sampling of multi-dimensional NMR spectra has over the last decade become an important tool to allow for fast acquisition of multi-dimensional NMR spectra with high resolution. The success of non-uniform sampling NMR hinge on both the development of algorithms to accurately re...
Autor principal: | Hansen, D. Flemming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859195/ https://www.ncbi.nlm.nih.gov/pubmed/31292846 http://dx.doi.org/10.1007/s10858-019-00265-1 |
Ejemplares similares
-
Reconstruction of non-uniformly sampled five-dimensional NMR spectra by signal separation algorithm
por: Kosiński, Krzysztof, et al.
Publicado: (2017) -
FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling
por: Karunanithy, Gogulan, et al.
Publicado: (2021) -
Algorithms for Reconstruction of Impedance Spectra from Non-uniformly Sampled Step Responses
por: Zaikou, Y., et al.
Publicado: (2023) -
DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
por: Li, Da-Wei, et al.
Publicado: (2021) -
Non-uniform sampling of similar NMR spectra and its application to studies of the interaction between alpha-synuclein and liposomes
por: Shchukina, Alexandra, et al.
Publicado: (2023)