Cargando…
Comparative analysis of differential proteome-wide protein-protein interaction network of Methanobrevibacter ruminantium M1
A proteome-wide protein-protein interaction (PPI) network of Methanobrevibacter ruminantium M1 (MRU), a predominant rumen methanogen, was constructed from its metabolic genes using a gene neighborhood algorithm and then compared with closely related rumen methanogens Using proteome-wide PPI approach...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859225/ https://www.ncbi.nlm.nih.gov/pubmed/31763465 http://dx.doi.org/10.1016/j.bbrep.2019.100698 |
Sumario: | A proteome-wide protein-protein interaction (PPI) network of Methanobrevibacter ruminantium M1 (MRU), a predominant rumen methanogen, was constructed from its metabolic genes using a gene neighborhood algorithm and then compared with closely related rumen methanogens Using proteome-wide PPI approach, we constructed network encompassed 2194 edges and 637 nodes interacting with 634 genes. Network quality and robustness of functional modules were assessed with gene ontology terms. A structure-function-metabolism mapping for each protein has been carried out with efforts to extract experimental PPI concomitant information from the literature. The results of our study revealed that some topological properties of its network were robust for sharing homologous protein interactions across heterotrophic and hydrogenotrophic methanogens. MRU proteome has shown to establish many PPI sub-networks for associated metabolic subsystems required to survive in the rumen environment. MRU genome found to share interacting proteins from its PPI network involved in specific metabolic subsystems distinct to heterotrophic and hydrogenotrophic methanogens. Across these proteomes, the interacting proteins from differential PPI networks were shared in common for the biosynthesis of amino acids, nucleosides, and nucleotides and energy metabolism in which more fractions of protein pairs shared with Methanosarcina acetivorans. Our comparative study expedites our knowledge to understand a complex proteome network associated with typical metabolic subsystems of MRU and to improve its genome-scale reconstruction in the future. |
---|