Cargando…

Quantitative Multiplexed ChIP Reveals Global Alterations that Shape Promoter Bivalency in Ground State Embryonic Stem Cells

To understand the epigenomic foundation of naive pluripotency, we implement a quantitative multiplexed chromatin immunoprecipitation sequencing (ChIP-seq) method comparing mouse embryonic stem cells (ESCs) grown in 2i versus 2i/serum and serum conditions. MINUTE-ChIP has a large linear dynamic range...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Banushree, Elsässer, Simon J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859498/
https://www.ncbi.nlm.nih.gov/pubmed/31533047
http://dx.doi.org/10.1016/j.celrep.2019.08.046
Descripción
Sumario:To understand the epigenomic foundation of naive pluripotency, we implement a quantitative multiplexed chromatin immunoprecipitation sequencing (ChIP-seq) method comparing mouse embryonic stem cells (ESCs) grown in 2i versus 2i/serum and serum conditions. MINUTE-ChIP has a large linear dynamic range for accurately quantifying relative differences in genome-wide histone modification patterns across multiple pooled samples. We find compelling evidence for a broad H3 lysine 27 trimethylation (H3K27me3) hypermethylation of the genome, while bivalent promoters stably retain high H3K27me3 levels in 2i. We show that DNA hypomethylation, as observed in 2i, is a contributor to genome-wide gain of H3K27me3, while active demethylation by JMJD3/UTX counteracts further accumulation of H3K27me3. In parallel, we find hypomethylation of H3 lysine 4 trimethylation (H3K4me3), particularly at bivalent promoters, to be a characteristic of the 2i ground state. Serum stimulates H3K4me3 independent of GSK-3b and ERK signaling, suggesting that low H3K4me3 and high H3K27me3 levels at bivalent promoters are a product of two independent mechanisms that safeguard naive pluripotency.