Cargando…
Cell Population Data–Driven Acute Promyelocytic Leukemia Flagging Through Artificial Neural Network Predictive Modeling
A targeted and timely offered treatment can be a benefitting tool for patients with acute promyelocytic leukemia (APML). Current round of study made use of potential morphological and immature fraction–related parameters (cell population data) generated during complete blood cell count (CBC), throug...
Autores principales: | Haider, Rana Zeeshan, Ujjan, Ikram Uddin, Shamsi, Tahir S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859536/ https://www.ncbi.nlm.nih.gov/pubmed/31733590 http://dx.doi.org/10.1016/j.tranon.2019.09.009 |
Ejemplares similares
-
Beyond the In-Practice CBC: The Research CBC Parameters-Driven Machine Learning Predictive Modeling for Early Differentiation among Leukemias
por: Haider, Rana Zeeshan, et al.
Publicado: (2022) -
TET2 mutations in acute myeloid leukemia: a comprehensive study in patients of Sindh, Pakistan
por: Shaikh, Abdul Rehman Khalil, et al.
Publicado: (2021) -
Acute Promyelocytic Leukemia
por: Thomas, Xavier, et al.
Publicado: (2020) -
Data-Driven Approaches to Predict Thermal Maturity
Indices of Organic Matter Using Artificial Neural Networks
por: Tariq, Zeeshan, et al.
Publicado: (2020) -
Acute promyelocytic leukemia, hypogranular variant: a rare presentation
por: Akhtar, Kafil, et al.
Publicado: (2011)